Signal,
x
[
n
]
{\displaystyle x[n]}
Z-transform,
X
(
z
)
{\displaystyle X(z)}
ROC
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
all
z
{\displaystyle {\mbox{all }}z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
e
−
α
n
u
[
n
]
{\displaystyle \,e^{-\alpha n}u[n]}
1
1
−
e
−
α
z
−
1
{\displaystyle 1 \over 1-e^{-\alpha }z^{-1}}
|
z
|
>
|
e
−
α
|
{\displaystyle |z|>|e^{-\alpha }|\,}
5
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
6
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
7
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
8
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
9
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
10
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
11
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
12
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
13
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
14
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
15
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
16
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
17
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
18
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
20
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
21
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}