प्रिज्म (ज्यामिति)
ज्यामिति में प्रिज्म उस बहुफलक को कहते हैं जिसका आधार n-भुजाओं वाला बहुभुज हो तथा इसी के समान्तर एक दूसरा सर्वसम फलक हो तथा इन दोनों समान्तर फलकों की संगत भुजाओं को मिलाने वाले n समानतर चतुर्भुजाकार फलक हों।
परिभाषा
संपादित करेंप्रिज्म त्रिआयामी वह ठोस है जिसके दोनों सिरे समांतर अनुरूप आकार के बहुभुज होते हैं जिन्हें आधार भी कहते हैं। इसकी प्रत्येक सतह समतल बहुभुज होती है।
प्रिज्म के प्रकार
संपादित करेंप्रिज्म का नाम उसके आधार की भुजाओं की संख्या पर निभर है।
- खंडित प्रिज्म (truncated prism)
- लम्ब प्रिज्म (right prism)
Sunil gurjjar
लम्ब प्रिज्म
संपादित करेंइस प्रिज्म के दोनों आधार समांतर होते हैं।लम्ब प्रिज्म की कोरें दोनों समांतर आधारों पर लम्ब होती हैं। [1]
लम्ब प्रिज्म के विशिष्ट रूप
संपादित करें- ऑप्टिकल प्रिज्म : जिसका आधार समबाहु त्रिभुज है .
- घन :जिसका आधार एक वर्ग है।
- घनाभ :जिसका आधार एक आयत है।
(पुस्तक ,ईंट ,दीवाल आदि। )
लम्ब प्रिज्म का आयतन
संपादित करेंलम्ब प्रिज्म का आयतन निकलने के लिए पहले आधार का क्षेत्रफल निकालते हैं फिर निम्न सूत्र के द्वारा प्रिज्म का आयतन निकलते हैं। लम्ब प्रिज्म का आयतन =आधार का क्षेत्रफल x ऊंचाई
लम्ब प्रिज्म का पृष्ठ==
लम्ब प्रिज्म का पार्श्व पृष्ठ
संपादित करेंलम्ब प्रिज्म का पार्श्व पृष्ठ निकलने के लिए पहले आधार की परिमाप निकालते हैं फिर निम्न सूत्र के द्वारा प्रिज्म का पार्श्व पृष्ठ निकलते हैं। लम्ब प्रिज्म का पार्श्व पृष्ठ =आधार की परिमाप x ऊंचाई
लम्ब प्रिज्म का सम्पूर्ण पृष्ठ
संपादित करेंलम्ब प्रिज्म का सम्पूर्ण पृष्ठ निकालने के लिए दोनों सिरों के क्षेत्रफल में पार्श्व पृष्ठ को जोड़ देते हैं :
चित्र वीथी
संपादित करें-
प्रिज्म :जिसका आधार पंचभुज
-
प्रिज्म:जिसका आधार षट्भुज
सन्दर्भ
संपादित करें- ↑ William F. Kern, James R Bland,Solid Mensuration with proofs, 1938, p.28