"प्रकाशमिति": अवतरणों में अंतर

No edit summary
पंक्ति 4:
 
==मुख्य मापनीय राशियाँ==
===प्रकाशस्रोत की प्रदीपन क्षमता (illuminating power) ===
यह कैंडिल शक्ति में मापी जाती है। किसी प्रकाशस्रोत द्वारा प्रति सेकंड प्रति ईकाई घन कोण में प्रेषित ज्योतीय फ्लक्स (luminous flux) को उस स्रोत की प्रदीपन क्षमता कहते है। मान लें (चित्र 1) र (r) अर्धव्यास के गोले (sphere) के केंद्र उ (o) पर एक अंतरराष्ट्रीय कैंडिल प्रदीपन क्षमता का प्रकाशस्रोत रखा हुआ है। इस स्रोत द्वारा उत्सर्जित फ्लक्स गोले के संपूर्ण आंतरिक तल पर समान रूप से वितरित होगा। यदि इस गोले के तल के एक भाग को, जिसका क्षेत्रफल स (S) हो, लेकर उसकी परिमा (periphery) के सभी बिंदुओं को केंद्र उ (o) से मिला दिया जाय तो एक घनकोण बन जायगा जिसमें होकर जानेवाला संपूर्ण प्रकाश स (S) पर पड़ेगा। चूँकि संपूर्ण गोले के आंतरिक पृष्ठ (= 4p र2) पर कुल फ्लक्स फ (F) पड़ता है, इसेलिए स (S) पर पड़नेवाला फलक्स फ का वाँ भाग होगा।
 
इसमें स/र2 = घन कोण द व (S/r2 = solid angle w )। अत: यदि स = र2 = 1 (S = r2 = 1) हो तो द व = 1 (d w = 1) तथा (S) पड़नेवाला ज्योतीय फ्लक्स = 1 होगा।
 
अतएव ज्योतीय फ्लक्स की इकाई की परिभाषा हम इस प्रकार दे सकते हैं : एक अंतराष्ट्रीय कैंडिल की क्षमता के समरूप बिंदुवत्‌ स्रोत द्वारा ईकाई घनकोण में उत्सर्जित प्रकाश ऊर्जा अथवा इकाई अर्धव्यास के गोले के केंद्र पर रखे हुए इकाई अंतरराष्ट्रीय कैंडिल सामर्थ्य के प्रकाशस्रोत द्वारा गोले के ईकाई क्षेत्र पर प्रति सेंकेंड प्रक्षिप्त ज्योति ऊर्जा की मात्रा को ज्योतीय फ्लक्स की ईकाई कहते हैं। इस इकाई को ल्यूमेन (Lumen) कहा जाता है।
 
उपर्युक्त दृष्टांत से यह स्पष्ट है कि इकाई घनकोण में उत्सर्जित फ्लक्स = 1/4p ´ कुल फ्लक्स (F), किंतु एक मानक कैंडिल द्वारा उत्सर्जित कुल फ्लक्स = 4p ल्यूमेन, इसलिये किसी प्रकाश स्रोत द्वारा इकाई घन कोण में उत्सर्जित फ्लक्स =
 
इकाई घन कोण में किसी प्रकाशस्रोत द्वारा उत्सर्जित फ्लक्स को उस स्रोत की प्रदीपन क्षमता (illuminating power) या प्रदीप्ति (luminosity) कहते हैं। अत: किसी प्रकाशस्रोत की प्रदीपन क्षमता उस स्रोत द्वारा इकाई क्षेत्र पर प्रति सेकेंड प्रेषित प्रकाश की मात्रा तथा इन्हीं परिस्थितियों में एक मानक कैंडिल द्वारा प्रति सेकंड प्रति ईकाई क्षेत्र पर प्रेषित प्रकाश की मात्रा का अनुपात होता है।
 
यदि प्रकाशस्रोत सभी दिशाओं में समान रूप से प्रकाश विकिरण नहीं करता तो किसी दिशा में, किसी घनकोण दव (dw ) में उसकी प्रदीप्ति
 
दप = द्वारा व्यक्त होगी।
 
और उस दशा मे कुल फ्लक्स
 
=
 
ईकाई घनकोण के फ्लक्स के माध्यमान (mean value) को प्रकाशस्रोत की माध्यगोलीय कैंडिल शक्ति (mean shperical Candle Power) कहते हैं। इसका मान उपर्युक्त विवेचन के अनुसार होगा।
 
===प्रदीप्त तल पर प्रदीपन की तीव्रता (intensity of illumination)===
प्रदीप्त तल के प्रति इकाई क्षेत्र पर प्रक्षिप्त प्रकाश फ्लक्स या तीव्रता को ल्यूमेन प्रति वर्ग फुट या ल्यूमेन प्रति वर्ग मीटर में व्यक्त किया जाता है। मान लें क (C) कैंडिल शक्ति के एक प्रकाशस्रोत के संमुख द स (d S) क्षेत्रफल का एक छोटा सा तल क्षेत्र र (r) दूरी पर स्थित है। स्पष्ट है कि प्रति सेकंड इस क्षेत्र पर पड़नेवाला फ्लक्स = क. द व = क. दस/र2 (C dw = Cd S/r2) ल्यूमेन अर्थात्‌ क/र2 (C/r2) ल्यूमेन प्रति वर्ग क्षेत्र होगा और यह फ्लक्स दूरी र (r) के वर्ग के अनुसार घटता जायगा। अतएव प्रदीपन इकाई तीव्रता (अर्थात्‌ एक ल्यूमेन प्रति वर्ग क्षेत्र) उस क्षेत्र पर प्रदीपन की तीव्रता के बराबर होगी जो इकाई कैंडिल शक्ति के स्रोत के सम्मुख, इकाई दूरी पर, आपाती प्रकाश (incident light) के अभिलंबवत्‌ (normal) रखा गया हो। मापन की प्रचलित प्रणालियों में इसकी इकाइयाँ क्रमश: मीटर कैंडिल और फुट कैंडिल हैं। यदि विचारणीय तल दस (d S) आपाती प्रकाश की दिशा के लंबवत्‌ न होकर लंब से q कोण झुका हो और दस (d S) का प्रक्षेप (projection) अभिलंब दिशा में दस' हो तो तल दस पर प्रदीपन की तीव्रता =
 
इसे लैंबर्ट का कोज्या नियम (Lambert's cosine Law) कहते हैं।
 
===प्रदीप्त तल की द्युति या चमक (Brightness or Brilliance of illuminated surface)===
कोई प्रदीप्त तल अपने ऊपर प्रक्षिप्त प्रकाश का कुछ भाग अवशोषित (absorb) करता है और शेष को परावर्तित (reflect) करता है। यदि वह परावर्तित प्रकाश किसी विशेष दिशा में जाता है तो उस ओर से देखने पर वह तल अत्यंत दीप्त दिखलाई पड़ता है, जैसे दर्पणों में। किंतु यदि वह तल प्रक्षिप्त प्रकाश को चतुर्दिक्‌ विसरित करता है तो वह कम दीप्त जान पड़ता है। ऐसे परावर्तन को विसरित परावर्तन (Diffused reflection) कहते हैं तथा प्रकाश को चतुर्दिक विसरित करनेवाले तलों को विसरित परावर्तक (Diffuse reflectors) कहते हैं।
 
यदि किसी विसरित परावर्तक तल के सामने हम अपने नेत्र इस प्रकार रखें कि दृष्टि की दिशा उस तल के अभिलंब से q कोण बनाए और हमारे नेत्र के चक्षुताल या तारा (pupil) का क्षेत्रफल अ (A) तथा दीप्त तल के किसी बिंदु से तारा पर प्रक्षिप्त प्रकाश की सीमा, घनकोण व (w ) के अंदर हो, तो व = जहाँ र (r) उस तल से नेत्र की दूरी है। यदि नेत्र की दिशा में तल की प्रभावकारी कैंडिल शक्ति कq (Cq ) प्रति इकाई क्षेत्र हो तो दस (d S) क्षेत्रफलवाले तल द्वारा नेत्र पर प्रक्षिप्त प्रकाश की मात्रा = कq . दस. व (Cq . d S. w )। लैंबर्ट के नियम के अनुसार कq = क0 कोज्या q ), जहाँ क0 (C0) अभिलंब की दिशा में दृश्य तल की दीप्ति है।
 
यदि संपूर्ण तल दस (d S) से नेत्र पर बननेवाला कोण द वा (d W ) हो तो
 
द वा =
 
अर्थात्‌ दवा =
 
\ प्रति इकाई घन कोण में तल से नेत्र द्वारा प्राप्त प्रकाश की मात्रा या तल की द्युति
 
=
 
 
अत: किसी प्रदीप्त तल की प्रदीप्ति दर्शक के नेत्र की दिशा (q ) पर निर्भर नहीं करती।
 
पुन: मान ले कि किसी तल की प्रदीप्ति बq (Bq ) है। उसके द्वारा प्रति इकाई प्रक्षेपित (projected) क्षेत्रतल पर उत्सर्जित कुल ज्योतीय फ्लक्स (total luminous flux) ज्ञात करने के लिये मान लें दस (d S) तल से q और (q +dq ) कोणों के बीच चलनेवाला फ्लक्स दव (d w ), किसी क्षण इकाई दूरी पार करता है। उस क्षण में यह फ्लक्स इकाई अर्धव्यास के एक गोले (Sphere) के, जिसका केंद्र तल दस (d S) का मध्य बिंदु है, भीतरी तल पर एक खंड (zone) से व्याप्त होगा जैसा चित्र 2 में प्रदर्शित है। इस खंड (zone) का क्षेत्रफल (2p sin q . dq ) होगा। q की दिशा में दस (d S) का प्रक्षेप द स कोज्या q (d S cosq ) होगा और इस प्रकार q तथा dq के बीच प्रति इकाई प्रेषित प्रकाश की मात्रा बq दस कोज्याq . dq 2p sin q dq ) होगी इसलिये सभी दिशाओं में प्रति इकाई क्षेत्र में कुल प्रेषित प्रकाश की मात्रा
 
= होगी।
 
पूर्ण विसरक तलों के लिये बq (Bq ) का मान स्थिर होता है। मान लो बq = ब (Bq = B), तो कुल प्रेषित प्रकाश की मात्रा
 
\ तल की द्युति ब (B) = प्रति इकाई क्षेत्र पर प्रेषित कुल प्रकाश की मात्रा का 1/p वाँ भाग।
 
किसी प्रदीप्त तल की द्युति यदि 1/p कैंडिल शक्ति प्रति वर्ग-सेंटीमीटर होती है तो उसे एक लैबर्ट कहते हैं। इसी प्रकार 1/p कैंडिल शक्ति प्रति ईकाई वर्ग फुट की द्युति को एक फुट-लैंबर्ट कहते हैं।
 
==स्टाइल्स क्रफ्रोर्ड प्रभाव==
स्टाइल्स और क्रफोर्ड ने पता लगाया कि नेत्र में पुतली (तारा) के केंद्र के निकट प्रविष्ट होनेवाला प्रकाश चाक्षुष अनुक्रिया (visual response) उत्पन्न कर सकने में अधिक प्रभावकारी होता है। इसका कारण यह है कि तार की परिमा (periphery) के निकट से होकर नेत्र के अंदर जानेवाली प्रकाश किरणें दृष्टिपटल (retina) पर अपेक्षाकृत अधिक तिरछी पड़ती हैं। इसलिये उनकी तीव्रता पूर्वकथित प्रकाश किरणों की अपेक्षा कम प्रतीत होती हैं। यह प्रभाव प्रदीप्ति की तीव्रता एवं प्रदीपन शक्ति के अध्ययन में विशेष सहायक होता है।
 
मान लीजिए, नेत्र एक किरणपुंज प्राप्त करता है और उसकी ऊर्जा नेत्रतारा में समरूप वितरित हो जाती है। स्टाइल्स क्रॉफोर्ड प्रभाव विद्यमान रहने पर दृष्टिपटल तक पहुँचनेवाले प्रभावी फ्लक्स नियमन के हेतु अ (a) क्षेत्रफल का नेत्रतारा (स्टाइल्स क्रॉफर्ड प्रभाव की उपस्थिति में) स अ (S. a) क्षेत्रफल के नेत्रतारा (स्टाइल्स क्रॉफर्ड प्रभाव की अनुपस्थिति में) के तुल्य होता है। 2 मिमी. व्यास के नेत्र तारा के लिये स्टाइल्स गुणांक स (S) का मान 0.95 होता है, किंतु 4 मिमी. व्यास के नेत्रतारा के लिये यह 0.82 तथा 6 मिम. व्यास के नेत्रतारा के लिये 0.66 होता है।
 
प्रकाश प्रणाली द्वारा निर्मित बिंब की ज्योतिर्मयता (luminance) एवं प्रदीप्ति (illumination) ¾ मान लीजिए, किसी प्रकाशिक तंत्र (optical system) के, जिससे दस (dS) तल क्षेत्र का बिंब द स' (ds' ) बन रहा हो, प्रवेशद्वार और निर्गमद्वार क्रमश: यप (E P) और य प' (E P' ) है तथा तल दस प्रकाशीय अक्ष (optic acis) के अभिलंबवत स्थित है। ऊपर वर्णित सूत्रानुसार उपर्युक्त प्रणाली में उ तथा उ+द अ (U और U+dU) कोणों चित्र 3. के बीच स्थित वलयखंड (annular zone) में प्रविष्ट होनेवाले फ्लक्स की मात्रा
 
दफ उ 2p बद ज्या उ कोज्या उ. द उ
 
(dF = 2p Bu sin U cos U. dU)
 
तथा U' और U' +dU' के बीच निर्गत फ्लक्स की मात्रा
 
दफ' = क. द फ
 
(dF' = k. dF)
 
जहाँ क (k) उपकरण का प्रकाश संचरण गुणांक (transmission factor) है। हेल्महोल्ट्स (Helmholts) सूत्र के अनुसार
 
m . h ज्या उ = m ' h' ज्या उ'
 
(m h sin U = m ' h' sin U' )
 
जहाँ m और m ' क्रमश: वस्तु एवं बिंब स्थलों के अपवर्तनांक हैं तथा h और h' क्रमश: वस्तु एवं बिंब के रैखिक आकार हैं। यह देखा जा सकता है कि संबद्ध क्षेत्रतत्वों dS एवं dS' के लिए
 
m 2 द स ज्या2 उ = m 2 द स' ज्या2 उ'
 
(m 2 dS. sin2 U = m ' 2 dS' . sin2 U' )
 
इन्हें अवकलित (differentiate) करने पर,
 
m 2 . द स. ज्या2 उ कोज्या उ. द उ = m ' 2 . द स' . 2 ज्या उ' कोज्या उ' . द उ'
 
[m 2 dS. 2 sin U cos U dU = m ' 2 dS' . 2 sin U' cos U' dU' ]
 
\ द फ' = क. द फ = क. ब' 2p ज्या उ' कोज्या उ' द उ'
 
dF' = k dF = k.B' u 2p sin U' cos U' dU'
 
यही फ्लक्स उ' (U' ) तथा उ' + द उ' (U+dU' ) कोणों के बीच में द स' क्षेत्र के परे जाता है। अतएव यंत्र में प्रविष्ट होनेवाला कुल फ्लक्स
 
फ = p ब3 ज्या2 उ अ [F = p Bu sin2 U max]
 
तथा यंत्र से निर्गत फ्लक्स फ' = क फ
 
= क p बउ ज्या2 उ' अ
 
स्मरणीय है कि उअ (U max) तथा उ1अ (U' max) क्रमश: आपाती एवं निर्गत फ्लक्सों के अधिकतम मान हैं। उपर्युक्त समीकरण के अनुसार बिंब की प्रदीप्ति
 
अर्थात्‌ य µ ज्या2 उ1अ [Eµ sin2U' max]
 
इससे यह स्पष्ट है कि फोटोग्राफी के कैमरे प्रभृति यंत्रों में जो पूर्णत: बिंब की कांति पर आश्रित होते हैं, लेंस प्रणाली का द्वारक या छिद्र (aperture) काफी बड़ा होना चाहिए।
 
==प्रदीपन क्षमता की तुलना==
प्रकाशस्रोतों के प्रदीपन सामर्थ्यों का तुलनात्मक अध्ययन करने के हेतु जिन उपकरणों की सहायता ली जाती है उन्हें ज्योतिर्मापी या प्रकाशमापी (photometers) कहते हैं। इन उपकरणों में एक पर्दे के तल या उसके किसी अंश को दो प्रकाशस्रोतों द्वारा प्रकाशित किया जाता है और उन्हें ऐसा समंजित किया जाता है कि दोनों प्रकाशस्रोतों द्वारा उत्पन्न प्रदीप्ति समान हो। ऐसी स्थिति में यदि एक प्रकाशस्रोत की प्रदीपन क्षमता क1 (C1) और पर्दे से दूरी द1 (d1) तथा दूसरे के लिये ये राशियाँ क्रमश: क2 (C2) और द2 (d2) हों तो
 
इस सिद्धांत का अनुसरण सर्वप्रथम रमफर्ड ने 1794 ई. में किया था, किंतु उनकी विधि अधिक उपयोगी नहीं सिद्ध हुई। सन्‌ 1843 में बुन्सन ने एक अत्यंत उत्कृष्ट उपकरण का आविष्कार किया जो रमफर्ड द्वारा अनुसरित सिद्धांत पर ही आधरित था, किंतु उसमें दृष्टिगत प्रदीप्ति की तीव्रता का अनुमान के द्वारा निर्णय कर सकने के बदले सटीक निर्णय कर सकने की सुविधा थी।
 
==प्रमुख ज्योतिर्मापी==