"मौसम विज्ञान": अवतरणों में अंतर

छो r2.7.1) (robot Adding: tg:Метеорология
छो robot Modifying: tg:Ҳавошиносӣ; अंगराग परिवर्तन
पंक्ति 2:
'''ऋतुविज्ञान''' या '''मौसम विज्ञान''' (Meteorology) कई विधाओं को समेटे हुए विज्ञान है जो [[वायुमण्डल]] का अध्ययन करता है। मौसम विज्ञान में [[मौसम]] की प्रक्रिया एवं मौसम का पूर्वानुमान अध्ययन के केन्द्रबिन्दु होते हैं। मौसम विज्ञान का इतिहास हजारों वर्ष पुराना है किन्तु अट्ठारहवीं शती तक इसमें खास प्रगति नहीं हो सकी थी। उन्नीसवीं शती में विभिन्न देशों में मौसम के आकड़ों के प्रेक्षण से इसमें गति आयी। बीसवीं शती के उत्तरार्ध में मौसम की भविष्यवाणी के लिये [[कम्प्यूटर]] के इस्तेमाल से इस क्षेत्र में क्रान्ति आ गयी।
 
मौसम विज्ञान के अध्ययन में [[पृथ्वी]] के वायुमण्डल के कुछ चरों (variables) का प्रेक्षण बहुत महत्व रखता है; ये चर हैं - [[ताप]], हवा का [[दाब]], जल वाष्प या [[आर्द्रता]] आदि। इन चरों का मान व इनके परिवर्तन की दर (समय और दूरी के सापेक्ष) बहुत हद तक मौसम का निर्धारण करते हैं।
 
== परिचय ==
ऋतुविज्ञान वायुमंडल का विज्ञान है। आधुनिक ऋतुविज्ञान में वायुमंडल में होनेवाली भौतिक घटनाओं का तथा उनसे संबद्ध उपलगोले (लिथोस्फ़ियर) और जलगोले (हाइड्रोस्फ़ियर) की घटनाओं का अध्ययन किया जाता है। ऋतुविज्ञान के विषय का वर्णन, जहाँ तक उसका संबंध निचले वायुमंडल की मौसमी घटनाओं से हैं, अधिकतम सुविधापूर्वक निम्नलिखित चार भागों में किया जा सकता है:
 
पंक्ति 15:
(4) जलवायु-तत्व (क्लाइमैटॉलोजी) जिसमें संसार के सब भागों के आर्तव प्रेक्षणों का सांख्यिकीय (स्टैटिस्टिकल) अध्ययन होता है और उसके द्वारा उन प्रसामान्य तथा मध्यमान (औसत) परिस्थितियों का ठीक-ठीक पता लगाया जाता है जिसके द्वारा जलवायु का वर्णन किया जा सकता है।
 
== ऋतुवैज्ञानिक तत्व (एलिमेंट्स) ==
ऋतु संबंधी प्रेक्षणों में, जिनसे वायुमंडल की दशा का ज्ञान मिलता है, निम्नलिखित बातें देखी जाती हैं :
 
=== ताप ===
वायु का ताप तापमापी (थरमामीटर) द्वारा नापा जाता है। इस थरमामीटर को सौर विकिरणों से अप्रभावित रखा जाता है। वायु की आर्द्रता ज्ञात करने के लिए गीले तापमापी (वेट बल्ब थरमामीटर) का उपयोग किया जाता है। इस थरमामीटर के बल्ब पर गीले मलमल के कपड़े की इकहरी तह लिपटी रहती है। आर्द्रता की मात्रा सूखे थरमामीटर तथा गीले थरमामीटर के पाठयांकों से निकाली जाती है।
 
=== वायुदाब ===
यह वायुदाबमापी (बैरोमीटर) द्वारा मापा जाता है और इससे पृथ्वी पर वायु का भार (प्रति इकाई क्षेत्रफल) विदित होता है।
 
=== पवन ===
पवन की दिशा तथा वेग का प्रेक्षण किया जाता है। दिशा वह ली जाती है जिस ओर से पवन आता है और दिक्सूचक के 16 अथवा 32 बिंदुओं में अंकित की जाती है। वेग पवन-वेगमापी (ऐनिमोमीटर) द्वारा मापा जाता है और मील प्रति घंटा या किलोमीटर प्रति घंटा या मीटर प्रति सेकंड में व्यक्त किया जाता है।
 
=== आर्द्रता ===
आर्द्रता से वायुमंडल में जलवाष्प की मात्रा का ज्ञान होता है और, जैसा पहले कहा जा चुका है, यह सूखे तथा गीले थरमामीटरों द्वारा नापी जाती है।
 
=== संघनन के रूप (कंडेंसेशन फार्म्स) ===
इसमें वायुमंडलीय संघनन के सब प्रकार के द्रव एवं ठोस उत्पादन संमिलित हैं। बादलों की मात्रा तथा उनके प्रकार, कुहरा तथा वर्षा, हिम (बर्फ), ओला आदि, का प्रेक्षण किया जाता है। प्रत्येक प्रकार का बादल आकाश के जितने भाग में व्याप्त हो उतने को पूरे आकाश के दशांशों में व्यक्त किया जाता है। जो संघनन कण काफी बड़े होते हैं वे वर्षा के रूप में पृथ्वी पर गिरते हैं।
 
=== दृश्यता (विज़िबिलिटी) ===
उस क्षैतिज दूरी को कहते हैं जहाँ तक की बड़ी और स्पष्ट वस्तुएँ दिखाई दे सकती हों।
 
=== छादन (सीलिंग) ===
ऊर्ध्वाधर दृश्यता (वर्टिकल विज़िबिलिटी) से संबंध रखती है और मेघतल की ऊँचाई से मापी जाती है।
 
== इतिहास ==
प्राचीन काल से ही मनुष्य ऋतु तथा जलवायु की अनेक घटनाओं से प्रभावित होता रहा है। वायुविज्ञान के प्राचीनतम ग्रंथ ऐरिस्टॉटल (384-322 ई.पू.) रचित 'मीटिअरोलॉजिका' तथा उनके शिष्यों की पवन तथा ऋतु संबंधी रचनाएँ हैं। ऐरिस्टॉटल के पश्चात्‌ अगले दो हजार वर्षो में ऋतुविज्ञान की अधिक प्रगति नहीं हुई। 17वीं तथा 18वीं शताब्दी में मुख्यत: यंत्रप्रयोग तथा गैस आदि के नियम स्थापित हुए। इसी काल में तापमापी का आविष्कार सन्‌ 1607 में गैलीलियों गेलीली ने किया और एवेंजीलिस्टा टॉरीसेली ने सन्‌ 1643 में वायु दाबमापी यंत्र का आविष्कार किया। इन आविष्कारों के पश्चात्‌ सन्‌ 1659 में वायल के नियम का आविष्कार हुआ। सन्‌ 1735 में जार्ज हैडले ने व्यापारिक वायु (ट्रैड विंड) की व्याख्या प्रस्तुत की तथा उसमें हैडले ने व्यापारिक वायु (ट्रेड विंड) की व्याख्या प्रस्तुत की तथा उसमें सबसे पहले वायुमंडलीय पवनों पर पृथ्वी के चक्कर के प्रभाव को सम्मिलित किया। जब सन्‌ 1783 में ऐंटोनी लेवोसिए ने वायुंमडल की वास्तविक प्रकृति का ज्ञान प्राप्त कर लिया और सन्‌ 1800 में जॉन डॉल्टन ने वायुमंडल में जलवाष्प के परिवर्तनों पर और वायु के प्रसार तथा वायुमंडलीय संघनन के संबंध पर प्रकाश डाला तभी आधुनिक ऋतुविज्ञान का आधार स्थापित हो गया। 19वीं शताब्दी में विकास अधिकतर संक्षिप्त ऋतुविज्ञान के क्षेत्र में हुआ। अनेक देशों ने ऋतुवैज्ञानिक संस्थाएँ स्थापित की और ऋतु वेधशालाएँ खोलीं। इस काल में ऋतु पूर्वानुमान की दिशा में भी पर्याप्त विकास हुआ। 20 वीं शताब्दी के पूर्वार्ध में 20 किलोमीटर की ऊँचाई तक वायु के वेग तथा दिशा आदि के प्रेक्षणों के बढ़ जाने के कारण जो सूचनाएँ ऋतुविशेषज्ञों को प्राप्त होने लगीं उनसे ऋतुविज्ञान की अधिक उन्नति हुई। ऊपरी वायु के ऐसे प्रेक्षणों से ऋतुविज्ञान की अनेक समस्याओं को समझने में बहुत अधिक सहायता मिली।
 
पंक्ति 46:
[[द्वितीय विश्वयुद्ध]] काल में मुख्यत: अधिक ऊँचाई पर उड़नेवाले वायुयानों के उपयोग के लिए ऋतु संबंधी सूचनाओं की माँग और बढ़ गई और इस माँग की पूर्ति के निर्मित्त विभिन्न ऊँचाइयों पर वायु के वेग तथा दिशा आदि के ज्ञान के लिए राडार प्रविधि (राडार टेकनीक) का विकास हुआ।
 
== वायुमंडल की रचना तथा ऊर्ध्वाधर विभाजन ==
निचले वायुमंडल की सूखी वायु में अनेक गैसों का मिश्रण होता है जिनमें मुख्यत: नाइट्रोजन 78 प्रतिशत, आक्सिजन 21 प्रतिशत, आरगन 0.93 प्रतिशत और कार्बन डाइआक्साइड 0.03 प्रतिशत होती हैं। इन गैसों के अतिरिक्त कुछ अन्य गैसें भी होती हैं, जैसे हाइड्रोजन तथा ओज़ोन। पवनों द्वारा निचले वायुमंडल के लगातार मिश्रण से तथा ऊर्ध्वाधर संवहन (कनवेक्शन) से सूखी हवा का मिश्रण इतना अपरिवर्ती रहता है कि कम से कम 20 किलोमीटर की ऊँचाई तक तो सूखी हवा का अणुभार 28.96 पर स्थिर रहता है; अर्थात्‌ वायु का घनत्व 1.276 (10)3 ग्राम प्रति घन सें. होता है, जब वायु दाब 1,000 मिलीबार हो और ताप 0° सेंटीग्रेड हो।
 
वायुमंडल में ओज़ोन की उपस्थिति फ़ाउलर तथा स्ट्रट ने वर्णक्रमदर्शी यंत्र (स्पेक्ट्रॉस्कोप) द्वारा प्रमाणित की थी। डॉबसन के प्रेक्षणों से भी यह बात सिद्ध हो गई है तथा यह ज्ञान भी प्राप्त हुआ है कि ओज़ोन भूतल से लगभग 30 से 40 किलोमीटर की ऊँचाई पर एक सीमित स्तर में पाई जाती है। इन ऊँचाई पर ओज़ोन की उपस्थिति मौसमी परिस्थितियों के लिए कुछ महत्वपूर्ण है। डॉबसन की खोज से पता लगा है कि 10 किलोमीटर ऊँचाई पर की वायुदाब में और ओज़ोन की मात्रा में घनिष्ठ संबंध है।
 
== वायुमंडल में जलवाष्प ==
वायुमंडल में केवल जलवाष्प ही ऐसा अवयव है जिसकी भौतिक अवस्था का परिवर्तन सामान्य वायुमंडलीय परिस्थितियों में होता रहता है। अत: वायुमंडल में जलवाष्प की प्रतिशत आयतन मात्रा बहुत घटती बढ़ती रहती है। वायुमंडल में जलवाष्प का घटना बढ़ना ऋतुविज्ञान के लिए अत्यंत महत्वपूर्ण है। जल का वाष्पीकरण तथा संघनन इसलिए महत्वपूर्ण है कि न केवल इनसे एक स्थान से दूसरे स्थान को जल का परिवहन होता है, वरन्‌ इसलिए भी कि जल के वाष्पीकरण के लिए गुप्त उष्मा के अवशोषण की आवश्यकता होती है। यह अंत में पुन: प्रकट होकर वायु को तब उष्ण करने के काम में आती है जब जलवाष्प का फिर से जलबिंदु तथा हिम में संघनन होता है।
 
यद्यपि नाइट्रोजन गैस अमोनिया, नाइट्रिक अम्ल तथा नाइट्रेटों का मुख्य अवयव है और ये पदार्थ बारूद आदि में बहुत महत्व रखते हैं, तथापि वायुमंडल में यह गैस बिलकुल निष्क्रिय रहती है। यह तो वायुमंडल के अधिक महत्वपूर्ण अवयव आक्सिजन गैस को, जो वायुमंडल का लगभग पाँचवाँ भाग होती है, केवल तनु कर देती है।
 
== वायुमंडलीय दाब का ऊँचाई के साथ घटना-बढ़ना ==
किसी भी स्थान की वायुदाब वहाँ के ऊपर की वायु के भार से उत्पन्न होती है, इसलिए दो विभिन्न ऊँचाइयों की वायुदाबों का अंतर इन दोनों ऊँचाइयों के बीच की हवा के एकांक अनुप्रस्थ काट (क्रॉस सेक्शन) के भार के बराबर होता है। यदि यह दाब का अंतर बीच की हवा के भार से यथार्थ रूप में संतुलित न हो तो उस वायुस्तर को ऊपर की ओर या नीचे की ओर त्वरण (ऐक्सेलरेशन) प्राप्त होता है। जिस परिस्थिति में दाब का अंतर और वायु का भार संतुलित हो, अथवा यों कहिए कि गुरुत्वजनित त्वरण के अतिरिक्त कोई अन्य ऊर्ध्वाधर त्वरण विद्यमान न हो, वह द्रवस्थैतिक संतुलन (हाइड्रोस्टैटिक ईक्विलिब्रियम) की परिस्थिति कहलाती है। यह परिस्थिति किसी भी स्तर पर ऊँचाई के साथ दाबपरिवर्तन की दर का परिचय देती है। यदि दो दाबस्तरों के बीच का दाब अंतर (dp) हो और दोनों स्तरों के बीच ऊर्ध्वाधर दूरी (dz) हो, घनत्व (p) हो और [[गुरुत्वजनित त्वरण]] (g) हो, तो
 
; dp/dz = -pMg/(RT)
पंक्ति 63:
इस समीकरण को '''द्रवस्थैतिक समीकरण''' कहते हैं।
 
== दाब ऊँचाई सूत्र ==
गुरुत्वजनित त्वरण विभिन्न अक्षांश (लैटिटयूड) तथा ऊँचाई के कारण थोड़ा सा ही घटता बढ़ता है, किंतु दाब, ताप तथा नमी के कारण वायु का घनत्व अधिक मात्रा में घटता बढ़ता है। इसलिए वायुमंडल में ऊर्ध्वाधर दाबप्रवणता (वर्टिकल प्रेशर ग्रेडियंट) अत्यंत परिवर्तनशील होती है।
 
पंक्ति 84:
:<math>M</math> = Molar mass of Earth's air (0.0289644&nbsp;kg/mol)
 
Or converted to English units:<ref name=conversion>Mechtly, E. A., 1973: ''The International System of Units, Physical Constants and Conversion Factors''. NASA SP-7012, Second Revision, National Aeronautics and Space Administration, Washington, D.C.</ref>
 
जहाँ
पंक्ति 92:
:<math>h</math> = Height above sea level (ft)
:<math>h_b</math> = Height at bottom of layer b (feet; e.g., <math>h_1</math> = 36,089&nbsp;ft)
:<math>R^*</math> = [[Universal gas constant]]; using feet, kelvins, and (SI) [[mole (unit)|moles]]: 8.9494596×10<sup>4</sup>&nbsp;lb&middot;·ft<sup>2</sup>/(lbmol·K·s<sup>2</sup>)
:<math>g_0</math> = Gravitational acceleration (32.17405&nbsp;ft/s<sup>2</sup>)
:<math>M</math> = Molar mass of Earth's air (28.9644&nbsp;lb/lbmol)
 
== ऊँचाई मापने की विधि ==
ऊँचाई मापने की प्रामणिक विधि यह है कि ऊपर दिए हुए सूत्र द्वारा दाब तथा ताप मापकर ऊँचाई का अंतर प्राप्त किया जाए और यदि यथार्थता की आवश्यकता हो तो आर्द्रता की मात्रा को भी काम में लाया जाए। प्रामाणिक तुंगतामापी (आल्टिमीटर) इसी सूत्र पर आधारित है।
 
== ताप का दैनिक परिवर्तन ==
दिन के समय सूर्य से गरमी मिलने और रात में विकिरण द्वारा पृथ्वी के ठंडी होने से वायु के ताप में दैनिक परिवर्तन उत्पन्न होता है। न्यूनतम ताप सूर्योदय से कुछ पहले होता है और अधिकतम ताप तीसरे पहर में होता है। वायु के ताप का यह दैनिक परिवर्तन भूतल के ऊपर से मुक्त वायुमंडल में शीघ्रता से घटता है। पृथ्वी के अधिकतर भागों में 5,000 फुट से अधिक की ऊँचाइयों पर तथा रेगिस्तानी प्रदेशों में 10,000 फुट की ऊँचाई पर ताप का दैनिक परास (रेंज) 2° या 3° सेंटीग्रेड से अधिक नहीं पाया गया है।
 
== वायुमंडल का उष्मासंतुलन ==
भूतल तथा वायुमंडल को गरमी लगभग पूर्णतया सूर्यविकिरण से ही मिलती है। अन्य आकाशीय पिंडों से गरमी बहुत ही कम मात्रा में मिलती है। सौर ऊर्जा की मापें स्मिथसोनियन संस्था की तारा-भौतिकी-वेधशाला में तथा अन्य कई पर्वतशिखरों पर स्थित वेधशालाओं में नियमित रूप से की जाती है और इन मापों की यथार्थता एक प्रतिशत से उत्कृष्ट होती है। पृथ्वी और सूर्य की मध्यमानसौर दूरी पर यह सौर आतपन ऊर्जा वायुमंडल में प्रविष्ट होकर अंशत: अवशेषित होने के पहले लगभग 1.94 ग्राम कलरी प्रति मिनट वर्ग सेंटीमीटर होती है; यहाँ प्रतिबंध यह है कि सूर्य की किरणें उस वर्ग सेंटीमीटर पर अभिलंबत: पड़ें। इस मात्रा को सौर नियतांक (सोलर कॉन्स्टैंट) कहते हैं। सौर नियतांक के मान में पाई गई अनियमित घट बढ़ एक प्रतिशत से भी कम रहती हैं; ये प्रेक्षणत्रुटियों के कारण हो सकती हैं। इन अनियमित उच्चावचनों के अतिरिक्त एक वास्तविक और बड़ा उच्चावचन भी पाया गया है जो ग्यारह वर्षीय सूर्य-कलंक-चक्र में लगभग प्रतिशत तक का दीर्घकालिक उच्चावचन और भी हो सकता है। परंतु ये सब उच्चावचन इतने लघु हैं कि वायुमंडलीय उष्म संतुलन के संबंध में यह मान लिया जा सकता है कि पृथ्वी पर सौर ऊर्जा 1.94 ग्राम कलरी प्रति वर्ग सेंटीमीटर प्रति मिनट पड़ती है। अनुमान किया गया है कि सौर ऊर्जा का 43 प्रतिशत भाग परावर्तित तथा प्रकीर्णित तथा प्रकीर्णन करने की सम्मिलित शक्ति को [[ऐलबेडो]] कहते हैं। यह 43 प्रतिशत है। शेष 57 प्रतिशत ऊर्जा, जो प्रभावकारी आतपन है, भूतल तथा वायुमंडल को औसतन 57 उष्मा इकाइयाँ प्रदान करता है। इन 57 उष्मा इकाइयों में से केवल एक लघु भाग का (अधिक से अधिक 14 इकाइयों का) वायुमंडल, मुख्यत: निचले स्तरों में जलवाष्प द्वारा और कुछ कम परिमाण में ऊपरी समताप मंडल (स्ट्रैटोस्फ़ियर) में ओज़ोन द्वारा, अवशोषण कर लेता है।
 
== वायुमंडल में वाष्पन तथा संघनन ==
वायुमंडल में वाष्पन तथा संघनन का कारण है वायु की जलवाष्प ग्रहण करने की शक्ति में कमी बेशी, अर्थात्‌ आर्द्र वायु का गरम या शीतल होना। साधारणत: वायुमंडल में जलवाष्प-मात्रा संतृप्त मात्रा से कम होती है, विशेषकर भूतल के समीप जहाँ वायुमंडल का प्रभावकारी आतपन अधिकतम होता है।
 
=== वाष्पन ===
वायु में नमी का अधिक भाग, जो वायुमंडल में जलवाष्पचक्र को चलाता रहता है, वाष्पन से प्राप्त होता है। जैसे-जैसे जल वाष्पित होता है, तैसे तैसे वह वायुमंडल में विसरित होता रहता है। वायुमंडल में वाष्पन द्वारा होनेवाली मौसमी क्रियाएँ अपेक्षाकृत महत्वपूर्ण नहीं होतीं। दृश्य भाप की उत्तपति भी वाष्पन द्वारा होनेवाली मौसमी क्रिया है। गरम जल की सतह से शीघ्रतापूर्वक वाष्पन होने के कारण बहुत ठंडी अथवा अपेक्षाकृत ठंडी आर्द्र वायु एकदम अति संतृप्त हो जाती है। इसका परिणाम यह होता है कि दृश्य भाप के रूप में नमी का तुरंत संघनन हो जाता है जिसके कारण स्थिर हवा में घना कोहरा बन जाता है।
 
=== वायुमंडलीय संघनन ===
संघनन किसी खुली सतह पर उस समय होता है जब उस सतह का ताप आसपास की वायु के ओसांक (डयू पॉइंट) के ताप से कम होता है। इस प्रकार के संघनन के उदाहरण गरम मौसम में पाए जाते हैं। जैसे, यद्यपि वायु की आपेक्षिक आर्द्रता सौ प्रतिशत से पर्याप्त कम रहने पर भी बर्फ के पानी से भरे गिलास के बाहर वायु का वाष्प संघनित हो जाता है उसी प्रकार स्वच्छ प्रशांत रात्रि में ओस का संघनन उन भूतलस्थित वस्तुओं पर हो जाता है जो अपनी ऊष्मा के विकिरण के कारण आसपास की वायु के ओसांक से निम्न ताप तक ठंडी हो जाती हैं, पाला उन सतहों पर जमता है जो हिंमाक से भी अधिक ठंडी हो जाती हैं, चाहे मुक्त वायु का ताप हिमांक से काफी ऊँचा की क्यों न हो।
 
पंक्ति 118:
साधारणत: निचले क्षोभमंडल (ट्रॉपोस्फ़ियर) के कुहरे और बादलों में प्रति घन सेंटीमीटर सौ से दस हजार तक नन्हें जलबिंदु होते हैं। बादलों में वषबिंदु अथवा दूसरे वर्षणकण किस प्रकार निर्मित होते हैं, यह विषय अभी संशययुक्त है। कदाचित्‌ ये बहुत से छोटे-छोटे मेघकणों के संयोजन द्वारा बनते हैं। संयोजन वायु की धाराओं के मिलने और वायु के मथ उठने से होता होगा। बड़े बड़े बिंदुओंवाली तीव्र वर्षा के बारे में स्वीकृत सिद्धांत यह है कि ये बिंदु तब बनते हैं जब हिममणिभ बादलों के ऊपरी भागों में पहुँच जाते हैं जहाँ अति शीत (सूपरकूल्ड) जलकरण विद्यमान रहते हैं। इस सिद्धांत का प्रतिपादन टी वर्गरान ने किया था।
 
== वायुमंडल का सामान्य संचार ==
मूलत: वायुमंडल का सामान्य संचार भूमध्यीय तथा ध्रवीय देशों के बीच क्षैतिज तापप्रवणता (ग्रेडियंट) के कारण उत्पन्न होता है। एक प्रकार के वायुमंडल का सामान्य संचार वायुमंडल की हलचल का तथा उसकी क्रियाओं का एक व्यापक विहंगम चित्र है। यदि दीर्घकाल के दैनिक मौसमी नक्शों का परीक्षण किया जाए तो यह ज्ञात होता है कि उनमें प्रवाह के रूप दो प्रकार के होते हैं :
 
पंक्ति 140:
(3) जनवरी मास के नक्शे पर उपोत्तरध्रुवीय (सब-आर्कटिक) अल्पदाब-कटिबंध स्पष्टतया दिखाई देता है। इस कटिबंध में दो बड़े अल्पदाब क्षेत्र आइसलैंड तथा अलूशियन द्वीपों पर हैं, जो क्रमानुसार उत्तरतम अटलांटिक महासागर पर तथा उत्तरतम पैसिफिक महासागर पर विस्तृत हैं। इन दोनों क्षेत्रों के बीच में ध्रुव पर अपेक्षतया अधिक दाब का एक क्षेत्र है। ग्रीष्म ऋतु में ये अल्पदाब बहुत क्षीण होते हैं। अलूशियन क्षेत्र तो गायब हो जाता है। ध्रुवों पर वायुदाब अपेक्षाकृत अधिक रहती है। उपोष्णवलयिक अधिदाब कटिबंध तथा उपध्रुवीय अल्पदाब कटिबंध की अखंडता में विच्छिन्नता नवीन तथा अज्ञात तत्वों के कारण होती है जिनका दक्षिणी गोलार्ध में अभाव है।
 
== गौण संचार ==
गौण संचार चाहे प्रतिचक्रवाती हों या चक्रवाती, उनका लक्षण यह है कि एक या अधिक समदाब रेखाएँ अधिदाब केंद्रों या अल्पदाब केंद्रों को चारों ओर से घेरकर बंद कर देती हैं। इस प्रकार अधिदाब क्षेत्र तथा अल्पदाब क्षेत्र क्रमानुसार वायुमंडल के भार की अधिकता अथवा न्यूनता के स्थानीय क्षेत्र होते हैं। गौण संचार दो प्रकार के होते हैं : (1) प्रत्यक्षत: उष्मीय (थर्मली डाइरेक्ट) और (2) गतिक (डाइनैमिक) अथवा प्रणोदित (फ़ोर्स्ड)। प्रत्यक्षत: उष्मीय अधिदाब तथा अल्पदाब निचले वायुमंडल के किसी स्थानविशेष के ठंडा या गरम होने से निर्मित होते हैं। गतिक अधिदाब तथा अल्पदाब दोनों ही सामान्य संचार की वायुधाराओं की पारस्परिक यांत्रिक (मिकैनिकल) क्रियाओं के कारण निर्मित होते हैं। प्रत्यक्षत: उष्मीय गौण संचारों में पावस (मानसून) तथा उष्णवलयिक प्रभंजन (हरीकेन) संम्मिलित हैं।
 
== पावससंचार ==
मानसून शब्द ऋतुसूचक अरबी शब्द से निकला है और आरंभ में अरब समुद्र के उन पवनों के लिए इसका व्यवहार किया जाता था जो लगभग छह महीने उत्तर-पूर्व से और छह महीने दक्षिण-पश्चिम से चलती हैं। अब यह शब्द कुछ अन्य पवनों के लिए भी लागू हो गया है जो वर्ष की विभिन्न दिशाओं में प्रतिकूल दिशाओं से दीर्घकालिक तथा नियमित रूप से चलती हैं। इन पवनों के चलने का प्राथमिक कारण थल तथा समुद्री क्षेत्रों के तापों का ऋतुजनित अंतर है। ये पवन थलसमीर तथा जलसमीर के सदृश ही होते हैं परंतु इनकी अवधि एक दिन के बजाए एक वर्ष की होती है और ये सीमित क्षेत्रों के बजाए बहुत विस्तृत क्षेत्रों पर चलते हैं। मानसून को हिंदी में पावस कहते हैं।
 
पंक्ति 152:
पावस के आरंभकाल में वर्षा की मात्रा और बारंबारता में भारी उत्तार चढ़ाव होते रहते हैं जो भारतीय कृषक जीवन के लिए अत्यंत महत्वपूर्ण हैं। इसलिए इस देश में सांख्यिकीय दीर्घपरास ऋतु पूर्वानुमान (स्टैटिस्टिकल लॉङरेंज फ़ोरकास्टिंग) के विकास की ओर अधिक ध्यान दिया गया है और सांख्यिकीय रीतियों का भारतीय पावस के अल्पकालिक परिवर्तनों के संबंध में उपयोग किया जा रहा है। भारत में इस प्रकार से किए हुए ऋतु विषयक पूर्वानुमान हाल के वर्षो में पर्याप्त रूप से ठीक सिद्ध हुए हैं।
 
== संदर्भ ग्रंथ ==
* आर.डब्ल्यू. लॉङली : मीटिओरॉलोजी, थ्योरटिकल ऐंड अप्लायड (1944);
* एच.सी.विलेट : डेस्क्रिप्टिव मीटिओरॉलोजी (1944)
 
== बाहरी कड़ियाँ ==
* [http://www.mausam.gov.in/WEBIMD/index.jsp भारत का मौसम विभाग] (हिन्दी में)
* [http://www.imd.ernet.in/main_new.htm भारत का मौसम विभाग] (पुराना लिंक)
 
* [http://www.shodor.org/metweb/ Air Quality Meteorology] - Online course that introduces the basic concepts of meteorology and air quality necessary to understand meteorological computer models. Written at a bachelor's degree level.
पंक्ति 250:
[[sv:Meteorologi]]
[[sw:Metorolojia]]
[[tg:МетеорологияҲавошиносӣ]]
[[th:อุตุนิยมวิทยา]]
[[tl:Meteorolohiya]]