"बोस-आइन्स्टाइन सांख्यिकी" के अवतरणों में अंतर

सम्पादन सारांश रहित
(नया पृष्ठ: {{आधार}} क्वांटम सांख्यिकी में अविलगनीय (indistinguishable) कणों का संचय के...)
 
{{आधार}}
[[क्वांटम सांख्यिकी]] तथा [[सांख्यिकीय भौतिकी]] में अविलगनीय (indistinguishable) कणों का संचय केवल दो विविक्त ऊर्जा प्रावस्थाओं (discrete energy states) में रह रकता है। इसमें से एक का नाम '''बोस-आइन्स्टाइन सांख्यिकी''' (Bose–Einstein statistics) है। [[लेजर]] तथा [[घर्षण]]हीन [[अतितरल हिलियम]] के व्यवहार इसी सांख्यिकी के परिणाम हैं। इस व्यवहार का सिद्धान्त १९२४-२५ में [[सत्येन्द्र नाथ बसु]] और [[अल्बर्ट आइंस्टीन]] ने विकसित किया था। 'अविलगनीय कणों' से मतलब उन कणों से है जिनकी ऊर्जा अवस्थाएँ बिल्कुल समान हों।
 
यह [[साम्ख्यिकीयसांख्यिकीय भौतिकी|सांख्यिकी]] उन्ही कणों पर लागू होती है जो जो [[पाउली का अपवर्जन सिद्धांत|पाउली के अपवर्जन सिद्धांत]] के अनुसार नहीं चलते।चलते, अर्थात् अनेकों कन एक साथ एक ही 'क्वांटम स्टेट' में रह सकते हैं। ऐसे कणों का चक्रण (स्पिन) का मान पूर्णांक होता है तथा उन्हें [[बोसॉन]] (bosons) कहते हैं।
 
यह सांख्यिकी १९२० में सत्येन्द्रनाथ बोस द्वारा प्रतिपादित की गयी थी और [[फोटॉन|फोटानों]] के सांख्यिकीय व्यवहार को बताने के लिये थी। इसे सन् १९२४ में आइंस्टीन ने कणों पर सामान्यीकृत किया।
 
== बोस-आइन्स्टाइन वितरण==
सांख्यिकीय रूप से, ऊष्मागतीय साम्य की दशा में, ''E<sub>i</sub>'' [[ऊर्जा]] वाले कणों की संख्या ''n<sub>i</sub>'' निम्नलिखित सम्बन्ध के अनुसार होगी-
 
:<math> n_i = \frac{g_i} { \exp ( \frac{ E_i - \mu } {k_{B}T} ) - 1 } \,</math>
जहाँ :
* ''g<sub>i</sub>'' उन प्रावस्थाओं (states) की कुल संख्या है जो ''E<sub>i</sub>'' ऊर्जा वाले हैं।
* ''μ'' रासायनिक विभव है,
* ''k<sub>B</sub>'' बोल्टमान स्थिरांक है,
* ''T'' [[तापमान]] है।
 
==सीमा==
अधिक तापमान पर क्वाण्टम प्रभाव अदृष्य होने लगता है और तब बोस-आइंस्टाइन सांख्यिकी, [[मैक्सवेल-बोल्टमान सांख्यिकी]] की तरफ अग्रसर होने लगती है। किन्तु कम ताप पर दोनों सांख्यिकी अलग-अलग रहती हैं।
 
==इन्हें भी देखें==