"पराश्रव्य" के अवतरणों में अंतर

29 बैट्स् जोड़े गए ,  8 वर्ष पहले
छो
Bot: अंगराग परिवर्तन
छो (r2.7.2) (Robot: Adding mk:Ултразвук)
छो (Bot: अंगराग परिवर्तन)
[[चित्र:Ultrasound range diagram.svg]]
 
== पराश्रव्य ध्वनि का उत्पादन ==
इसकी निम्नलिखित विधियाँ हैं :
 
=== यांत्रिक जनित्र ===
१८९९ ई. में कोनिंग ने छोटे छोटे स्वरित्रों द्वारा ९०,००० कंपन प्रति सें., तक की पराश्रव्य तरंगें उत्पन्न कीं। इडेमान ने गाल्टन सीटी को बनाया, जिसके द्वारा वह एक निश्चित आयामवाले १,००,००० कंपन प्रति से. उत्पन्न करने में सफल हुआ। एक तुंड में से हवा फूँकी जाती है। हवा की यह धारा एकदीर्घ छिद्र में से बहकर एक क्षुरधार से टकराकर पराश्रव्य कंपन पैदा करती है। गैस-धारा जनित्र द्वारा हार्टमान ने अधिक ऊर्जावाली पराश्रव्यध्वनि पैदा की। हॉफमान ने काच की छड़ को उसकी लंबाई की समांतर दिशा में कंपित कर ३३,००० कंपनवाली अधिक ऊर्जा की पराश्रव्य ध्वनि उत्पन्न की।
 
=== विद्युज्जनित्र ===
अब इनका केवल ऐतिहासिक महत्व है। अटबर्ग ने स्फुलिंग-अंतराल (spark gap) द्वारा ३,००,००० आवृत्तिवाली पराश्रव्य ध्वनि पैदा की, किंतु यह ध्वनि कई भिन्न भिन्न आवृत्तियों का मिश्रण होती है और इनका आयाम भी अनिश्चित होता है।
 
=== चुंबकीय आकारांतर जनित्र (Magneto-striction Generator) ===
यदि लोहचुंबकीय (ferromagnetic) पदार्थ की छड़ अथवा नली को उसकी लंबाई के समांतर किसी चुंबकीय क्षेत्र में रखा जाए तो आण्विक पुनर्व्यवस्था के कारण उसकी लंबाई में परिवर्तन हो जाता है। इस घटना को चुंबकीय आकारांतर कहते हैं। यह अनुसंधान जूल ने किया था। लंबाई का यह परिवर्तन चुंबकीय बलक्षेत्र की दिशा पर निर्भर नहीं है। यदि कोई लोहचुंबकीय पदार्थ प्रत्यावर्ती चुंबकीय क्षेत्र पर रखा जाए तो वह अपनी स्वाभाविक अथवा अधिस्वर आवृत्ति से कंपित होकर पराश्रव्य ध्वनि उत्पन्न करेगा।
 
इस विधि से अधिकतम आवृत्ति २००००० तक उत्पन्न की जा सकती है।
 
=== दाब-विद्युत्‌ (piezo-electric) जनित्र ===
सन्‌ १८८० में पी. और पी.जे. क्यूरी ने बताया कि यदि सममिति रहित स्फटिकों या क्रिस्टलों के किन्हीं विशेष अक्षों पर दबाव लगाया जाए तो उनके दो तलों पर विजातीय विद्युदावेश उत्पन्न होते हैं। कुछ दिनों बाद इन्हीं दो भाइयों ने इससे विपरीत प्रभाव का भी आविष्कार किया, अर्थात्‌ यह प्रमाणित किया कि बल लगाने से इन क्रिस्टलों की लंबाई में परिवर्तन होता है। इस घटना को दाब-विद्युत्‌-प्रभाव कहते हैं। सन्‌ १९१७ ई. लैंजेविन ने क्वार्ट्ज़ क्रिस्टल को उसकी स्वाभाविक आवृत्ति से कंपित करने के लिए एक समस्वरित विद्युत्‌ परिपथ के द्वारा उसे उत्तेजित किया। यदि विद्युत्‌ परिपथ की आवृत्ति क्रिस्टल की आवृत्ति के बराबर हो, जो क्रिस्टल अनुनादित कंपन करने लगता है। क्रिस्टल अपनी स्वाभाविक आवृत्ति की अधिस्वरित आवृत्ति तथा निश्चित आयामवाली पराश्रव्य ध्वनि उत्पन्न करता है। पराश्रव्य ध्वनि उत्पन्न करने की यही अर्वाचीन विधि है।
 
क्रिस्टलों को काम में लाने से पूर्व विशेष रीति से काटा जाता है और उनको प्रयोग के लिए विशेष रीति से रखा जाता है।
 
== पराश्रव्य ध्वनि के परिचायक (detectors) ==
पराश्रव्य ध्वनि के मुख्यत: चार प्रकार के परिचायक होते हैं :
 
=== यांत्रिक परिचायक ===
जब गैस माध्यम में बिलकुल हलके ठोस, अथवा द्रव, के कण छोड़े जाते हैं तब वे पराश्रव्य ध्वनि के द्वारा अपने अवस्थितित्व के अनुसार चालित होते हैं। उनकी गति के अध्ययन से पराश्रव्य ध्वनि का परिचय प्राप्त होता है।
 
यदि पराश्रव्य तरंगें अति सूक्ष्म न हों तो कुंट की नली में अग्रगामी तरंगें बनाकर लाइकोपोडियम चूर्ण द्वारा उनका प्रेक्षण किया जाता है।
 
=== उष्मीय परिचायक ===
ध्वनिग्राही दीपशिखा (sensitive flame) द्वारा ध्वनि की तरंगों के ही समान इन तरंगों का भी परिचय प्राप्त किया जाता है।
 
ये तरंगें तारों पर गिरकर क्रमश: उष्मा अथवा शीत पैदा करती हैं। ताप के इस परिवर्तन से तार का विद्युत्‌ प्रतिरोध बदलता है। इस गुण का भी उपयोग इन तरंगों के बारे में ज्ञान प्राप्त करने में होता है।
 
=== प्रकाशित परिचायक ===
पराश्रव्य तरंगों से जो अप्रगामी तरंगें बनती हैं, उनसे माध्यम का वर्तनांक कहीं बढ़ जाता है और कहीं घट जाता है। इस प्रकार के माध्यम में से प्रकाश के जाने पर रेखांकन (striation) हो जाता है। इन रेखाओं के ज्ञान से इन तरंगों का परिचय होता है। प्रगामी तरंगें भी स्ट्रोबोस्कोपी प्रदीपन (stroboscopic illumination) के द्वारा इसी विधि से व्यक्त हो जाती है।
 
=== वैद्युत परिचायक ===
बेरियम टाइटेनेट के क्रिस्टल के दाबविद्युत्‌ गुण का उपयोग कर उससे [[माइक्रोफोन]] बनाया जाता है और उसके द्वारा इन तरंगों का अस्तित्व मालूम किया जाता है।
 
इस प्रकार इन विविध उपयोगों के कारण इस आणविक युग में भी पराश्रव्य ध्वनिकी का भौतिक विज्ञान में महत्वपूर्ण स्थान है।
 
== इन्हें भी देखें ==
* [[सोनोग्राफी]] या [[पराश्रव्य चित्रण]]
 
== बाहरी कड़ियाँ ==
* [http://www.patrika.com/article.aspx?id=18569 अल्ट्रासाउंड से घुटने के दर्द का इलाज]
* Kundu, Tribikram. ''Ultrasonic nondestructive evaluation: engineering and biological material characterization''. Boca Raton, FL: CRC Press, c2004. ISBN 0-8493-1462-3.
* [http://www.hc-sc.gc.ca/ewh-semt/pubs/radiation/safety-code_24-securite/health-sante-eng.php Guidelines for the Safe Use of Ultrasound]: valuable insight on the boundary conditions tending towards abuse of ultrasound.
* [http://www.ncbi.nlm.nih.gov/pubmed/6654504 High-frequency hearing risk for operators of industrial ultrasonic devices]:
* [http://www.fetalultrasoundsafety.net/Downloads/fetalultrasoundsafety.pdf Safety Issues in Fetal Ultrasound]:
* [http://cat.inist.fr/?aModele=afficheN&cpsidt=3419382 Damage to red blood cells induced by acoustic cavitation(ultrasound)]:
 
[[श्रेणी:ध्वनि]]
74,334

सम्पादन