"रासायनिक गतिकी": अवतरणों में अंतर

छो r2.7.2+) (Robot: Adding simple:Chemical kinetics
छो Bot: अंगराग परिवर्तन
पंक्ति 2:
आधुनिक रासायनिक एवं औद्योगिक ज्ञान के विकास के साथ ही साथ '''रासायनिक गतिकी''' (केमिकल काइनेटिक्स) या 'अभिक्रिया गतिविज्ञान' (Reaction, Kinetics) का शीघ्रता से विकास हुआ है। इसके फलस्वरूप रासायनिक प्रतिक्रिया गतिविज्ञान केवल प्रयोगशालाओं में सीमित न रहकर अब औद्योगिक संयंत्र का एक अंग बन गया है। अनेक रासायनिक क्रियाओं के द्वारा ओद्यौगिक उत्पादन किया जाता है। अत: रासायनिक उद्योग में इन क्रियाओं का अत्यंत महत्व होता है। आधुनिक युग में रासायनिक क्रियाओं के केवल प्रारंभिक ज्ञान से रासायनिक उद्योगों की स्थापना एवं विकास संभव नहीं है, विशेषत: जब कम लागत के उत्पादन पर अत्याधिक बल दिया जाता है। अत: आधुनिक काल में प्रतिक्रिया गतिविज्ञान का गहन अध्ययन केवल प्रयोगशाला का विषय न होकर औद्योगिक क्षेत्र का प्रमुख विषय बन गया है। प्रतिक्रिया गतिविज्ञान के विषयक्षेत्र में वृद्धि एवं विकास का प्रमुख कारण [[उष्मागतिकी|ऊष्मा-गति-विज्ञान]] का विकास है।
 
== रासायनिक अभिक्रिया की गति ==
मुख्य लेख '''[[अभिक्रिया की दर|रासायनिक अभिक्रिया की दर]]'''
 
पंक्ति 10:
: <math>v = \frac{\partial C}{\partial t} = -\frac{\partial A}{\partial t}.</math>
 
== परिचय ==
रासायनिक क्रिया का अध्ययन दो प्रमुख रीतियों से किया जाता है। इस रीति से अध्ययन करने में [[रासायनिक अभिक्रिया|रासायनिक क्रिया]] के प्रारंभिक एवं अंतिम रासायनिक परिवर्तन पर ध्यान दिया जाता है। इस रीति से अध्ययन में रासायनिक क्रिया की साम्यावस्था परिस्थितियों पर तथा इन परिस्थितियों के मूल्याँकन पर विशेष ध्यान दिया जाता है। अध्ययन की यह रीति गणित के नियमों के समान निश्चित तथा कठोर सिद्धांतों पर आधारित होती है। किसी रासायनिक क्रिया का इस रीति से अध्ययन एवं विश्लेषण ऊष्मा गतिविज्ञान पर आधारित होता है।
 
पंक्ति 21:
रासायनिक क्रिया में भाग लेनेवाली क्रियाप्रणाली के अणु ऊर्जा के विभिन्न स्तरों पर स्थित होते हैं। सामान्यत: ताप में वृद्धि होने से क्रिया की गति तीव्र हो जाती है। इसी प्रकार उत्प्रेरक पदार्थ की उपस्थिति में क्रिया की स्थिति में सक्रियण ऊर्जा कम हो जाती है, जिससे अणु की क्रियाशीलता में वृद्धि होने से क्रिया की गति तीव्र हो जाती है। उदाहरणार्थ, हाइड्रोजन तथा ऑक्सीजन गैस की रासायनिक क्रियाप्रणाली में, इन दोनों तत्वों के संयोग से जल की उत्पत्ति क्रिया के लिये यह आवश्यक होता है कि इन दोनों गैसों का उन्नयन संक्रियण अवस्था में किया जाय। हाइड्रोजन तथा ऑक्सीजन गैस के अणु की सक्रियण-उन्नयन-क्रिया विद्युत स्फुलिंग से, अथवा उत्प्रेरक पदार्थ के प्रयोग से, सक्रियण ऊर्जा में कमी के द्वारा उत्पन्न की जा सकती है, जिससे सामान्य ताप पर हाइड्रोजन तथा ऑक्सीजन के संश्लेषण से जल की उत्पत्ति हो सके। संश्लेषण क्रिया के उपरांत जल के रूप में क्रियाप्रणाली साम्यावस्था के निम्नतर स्तर पर स्थित होती है, जो स्थायी परिस्थिति का परिचायक होता है। उपर्युक्त क्रिया की विपरीत क्रिया में, अर्थात्‌ जल विघटन की क्रिया में, सक्रियण ऊर्जा, जिसकी मात्रा संयुक्तिकरण ऊर्जा तथा चालन शक्ति ऊर्जा (योग D गa + D ग) के बराबर होती है, आवश्यक होती है। सक्रियण ऊर्जा की यह मात्रा उपलब्ध होने पर जल विघटन की क्रिया द्वारा जल से हाइड्रोजन तथा ऑक्सीजन गैस का उत्पादन होता है। अत: उपयुक्त क्रिया की परिस्थिति में हाइड्रोजन तथा ऑक्सीजन गैस के संयोग से जल उत्पादन की क्रिया को अधिक अनुकूल समझा जाता है, जब कि जलविघटन की प्रतिकूल क्रिया उपर्युक्त अवस्था में अनुकूल नहीं होती।
 
== क्रियागतिकी के निर्धारण की प्रयोगात्मक रीतियाँ ==
क्रियागतिकी का औद्योगिक उपकरणों के अभिकल्प (design) एवं उत्पादन में विशेष महत्व होता है। अत: उपकरण अभिकल्प के कार्य में प्रयोग की जानेवाली प्रयोगात्मक सामग्री को नियंत्रित प्रयोगों द्वारा पहले प्राप्त किया जाता है। नियंत्रित परिस्थिति में ये प्रयोग सर्वप्रथम प्रयोगशाला में, तदुपरांत निदेशक संयंत्र तथा कभी कभी बड़े आकार के औद्योगिक संयंत्रों में, परीक्षण चालन (trial run) के द्वारा किये जाते हैं। निदेशक संयंत्र के निर्माण में प्रयोग की जानेवाली प्रयोगात्मक सामग्री को प्रयोगशाला के प्रारंभिक प्रयोगों द्वारा एकत्र किया जाता है।
 
पंक्ति 34:
प्रयोगशाला में प्राय: पहले वर्ग की प्रक्रिया व्यवस्था द्वारा प्रयोगात्मक सामग्री का एकत्रीकरण किया जाता है। इस वर्ग की प्रक्रिया व्यवस्थाएँ, उन प्रक्रियाओं को छोड़कर जिनमें दबाव में बहुत परिवर्तन होता है, जैसे गैस की प्रक्रियाओं में होता है, सामान्यत: सरल एवं प्रत्यक्ष होती हैं। निदेशक संयंत्र के प्रयोगों में सामान्यत: दूसरे वर्ग की प्रक्रिया व्यवस्था से प्रयोगात्मक प्रक्रिया सामग्री का एकत्रीकरण किया जाता है। इस वर्ग की प्रयोगव्यवस्था से प्राप्त सामग्री का प्रत्यक्ष उपयोग औद्योगिक प्रक्रिया पात्र के प्रवाह प्रक्रमों में किया जाता है। तीसरे वर्ग की प्रक्रिया व्यवस्था की प्रयोगात्मक रीति अत्यंत जटिल होती है, अत: इसका प्रयोग सीमित है। इस वर्ग की प्रक्रिया व्यवस्था में प्रक्रिया प्रणाली के आयतन में परिवर्तन के द्वारा स्थिर दबाव की अवस्था को बनाए रखा जाता है। यह कार्य अत्यंत कठिन होता है, विशेषकर उन क्रियाओं में जिनमें प्रावस्था (phases) का परिवर्तन होता है।
 
== रासायनिक क्रियाओं का वर्गीकरण ==
मूल रूप में रासायनिक क्रियाओं को दो समूहों में विभाजित किया जाता है। प्रथम समूह में समांग क्रियाओं को सम्मिलित किया जाता है, जिनकी क्रियाप्रणाली में केवल एक प्रावस्था होती है। दूसरे समूह की विषमांग क्रियाओं में एक से अधिक प्रावस्थाओं की उपस्थिति होती है। उत्प्रेरित क्रियाओं में उत्प्ररेक पदार्थ तथा क्रिया प्रणाली के अंतरास्तरीय अंतक्रिया के कारण संपूर्ण रासायनिक क्रिया को विषमांग क्रिया कहा जाता है।
 
पंक्ति 43:
क्रिया गतिविज्ञान की दृष्टि से दोनों दिशाओं में होनेवाली क्रियाओं को उत्क्रमणीय क्रिया कहा जाता है तथा एक ही दिशा में होने वाली क्रिया को एकदिशीय अथवा अनुत्क्रमणीय क्रिया कहा जाता है। ऊष्मा गतिविज्ञान के क्षेत्र में उत्क्रमणीय क्रिया का भिन्न दृष्टिकोण से विश्लेषण किया जाता है। ऊष्मा गतिविज्ञान के अनुसार पृथक्‌ क्रियाप्रणाली की सभी क्रियाएँ अनुत्क्रमणीय होती हैं। अत: क्रिया गतिकी में उत्क्रमणीय क्रिया का ऊष्मा गतिविज्ञान से पूर्णत: भिन्न अर्थ होता है। बंद क्रियाप्रणाली में क्रिया करनेवाले सभी पदार्थो के पृथक्करण से प्रत्येक क्रिया को सैद्धांतिक रूप में, क्रिया गतिविज्ञान से उत्क्रमणीय क्रिया बनाया जा सकता है। इसी प्रकार से प्रत्येक क्रिया प्रारंभ में एकदिशीय होती है। विपरीत क्रिया की परिस्थिति में क्रिया के उपरांत प्राप्त होनेवाले उत्पाद की मात्रा में कमी हो जाती है। अत: उत्क्रमणीय क्रिया को जहाँ तक हो सके नहीं होने दिया जाता है। उत्क्रमणीय क्रियाओं में क्रिया के उपरांत निर्मित होनेवाले उत्पाद पदार्थो में से किसी एक को यदि क्रियाप्रणाली से हटा दिया जाय तो उत्क्रमणीय क्रिया एकदिशीय क्रिया की भाँति होने लगती है।
 
== समांग क्रियाओं का गतिसमीकरण ==
ऊष्मा गतिविज्ञान के आधार पर रासायनिक क्रियाओं के अध्ययन से यह स्पष्ट हो जाता है कि क्रिया की गति क्रिया में भाग लेनेवाले प्रत्येक अणु की सक्रिय सांद्रता के अनुपात में होती है। यदि किसी A तथा B नामक पदार्थो में क्रिया हो तथा उनके अणुओं की सक्रिय सांद्रता क्रमश: a तथा b और क्रिया के उपरांत उत्पाद पदार्थ R तथा S के अणुओं की सक्रिय सांद्रता क्रमश: r तथा s हो तो इस क्रिया को निम्नांकित रूप में व्यक्त किया जा सकता है :
 
पंक्ति 62:
a aA . a bB
 
== क्रिया गति स्थिरांक का ताप के परिणमन पर प्रभाव ==
रासायनिक क्रिया में ताप आणिवक गति की माप होता है। अत: क्रिया के ताप में वृद्धि से क्रियागति की ऊर्जा में भी वृद्धि होती है और क्रियागति की ऊर्जा में वृद्धि होने से क्रियागति में तीव्रता आती है। आरिनियस (Arrhenius) के सिद्धांत के अनुसार ताप तथा सक्रियण ऊर्जा के साथ क्रियागति में वृद्धि का निम्नांकित संबंध होता है :
 
पंक्ति 69:
इस समीकरण में k क्रियागति स्थिरांक, A अनुपाती स्थिरांक, D Ha सक्रियकरण ऊष्मा, T ताप तथा R क्रिया के दबाव-आयतन-स्थिरांक को व्यक्त करता है। क्रिया में ताप के अल्प परिवर्तन की परिस्थिति में A तथा D Ha प्राय: स्थिरांक होते हैं। सामान्य ताप पर होनेवाली अधिकांश समांग रासायनिक क्रियाओं में ताप में १०० सें. की वृद्धि होने से क्रियागति स्थिरांक प्राय: दुगुना हो जाता है।
 
== क्रिया की स्थानगति ==
प्रवाह प्रक्रम की क्रियाओं में क्रियापात्र के आयतन तथा प्रदायगति का अनुपात स्थानगति से संबंधित होता है। क्रिया में प्रदाय आयतन की गति तथा क्रियापात्र के आयतन के सह संबध की क्रिया की स्थानगति कहा जाता है।
 
एक साथ होनेवाली अनेक क्रियाएँ ¾ किसी रासायनिक क्रिया में भाग लेनेवाले जब कुछ अथवा सभी पदार्थ एक समय में ही एक से अधिक क्रिया करते हों, तो क्रिया का गतिक समीकरण अत्यंत जटिल हो जाता है। अत: इस प्रकार की एक साथ होनेवाली अनेक क्रियाओं के क्रिया-गति-विज्ञान के अध्ययन में बिंदुरेखीय रीति का प्रयोग किया जाता है।
 
== अनुगामी क्रियाएँ ==
इस प्रकार की क्रियाओं में क्रिया के उपरांत निर्मित होनेवाले पदार्थो की सहक्रिया के कारण नए तथा अतिरिक्त पदार्थो का उत्पादन होता है।
 
== शृंखलाबद्ध क्रियाएँ ==
अनुगामी क्रियाओं की माला को, जिसमें क्रियाओं की बार बार आवृत्ति होती हो, श्रृंखलाबद्ध क्रिया कहा जाता है। इस प्रकार की श्रृंखलाबद्ध क्रियाएँ कभी कभी बहुत लंबी होती हैं। अत: ऋणात्मक उत्प्रेरक पदार्थो, अथवा अवरोधक पदार्थो के प्रति श्रृंखलाबद्ध क्रियाएँ अत्यंत सुग्राही होती हैं, क्योंकि किसी एक अणु पर हजारों अणुओं से निर्मित संपूर्ण शृंखला की कड़ी निर्भर करती है। श्रृंखलाबद्ध क्रियाओं का सरलतम उदाहरण प्रकाश के संयोग में हाइड्रोजन तथा क्लोरीन गैस की संश्लेषण क्रिया है, जिसके फलस्वरूप हाइड्रोजन क्लोराइड का उत्पादन होता है। इस क्रिया में निम्नांकित क्रियाओं की माला के द्वारा क्रिया संपन्न होती है :
 
पंक्ति 90:
क्रिया में प्रकाश के अवशोषण से जैसे ही पारमाणिवक क्लोरीन का निर्माण होता है, यह हाइड्रोजेन के साथ क्रिया करके पारमाणिवक हाइड्रोजन का उत्पादन करता है, जो पुन: क्लोरीन के साथ क्रिया करके पारमाणिवक क्लोरीन को मुक्त करता है और इस प्रकार क्रिया का यह क्रमबद्ध विकास होता रहता है, जिससे हाइड्रोजन क्लोराइड की मात्रा में क्रमश: वृद्धि होती जाती है।
 
== विषमांग क्रियाएँ ==
सामन्यत: अधिकांश विषमांग क्रियाएँ उत्प्रेरकों के प्रयोग द्वारा उत्प्रेरित क्रियाओं के क्षेत्र में पाई जाती हैं। इस सामान्य धारण में भी अनेक अपवाद पाए जाते हैं। अनेक विषमांग क्रियाओं की क्रियाप्रणाली में विभिन्न प्रावस्था के क्रियाशील पदार्थ उपस्थित होते हैं। एथिलीन्‌ ऑक्साइड (गैस) तथा जल (द्रव) की पारस्परिक क्रिया से एथिलीन ग्लाइकोल बनता है। यह क्रिया निम्नांकित रूप में प्रदर्शित की जाती है :
 
पंक्ति 97:
उपर्युक्त क्रिया विषमाँग क्रिया है। विभिन्न प्रावस्थावाली विषमांग क्रियाओं में क्रिया-गति-विज्ञान का संयंत्र समांग क्रियाओं की भाँति केवल रासायनिक कारकों पर ही निर्भर करता है, वरना भौतिकीय तथा रासायनिक दोनों ही कारकों पर निर्भर करता है। इस प्रकार विषामांग क्रियाओं में विसरण (diffusion) अत्यंत महत्वपूर्ण कारक होता है। विषमांग क्रियाओं का गति-विज्ञान-विश्लेषण अत्यंत जटिल होता है। क्योंकि सभी प्रावस्था की क्रियाओं का एक साथ विश्लेषण करना होता है, अत: औद्योगिक दृष्टि से प्राय: सभी क्रियाओं के विश्लेषण में अनुभवजन्य रीतियों का ही प्रयोग किया जाता है।
 
== बाहरी कड़ियाँ ==
* [http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/rateframe.html Chemical Kinetics]
* [http://www.chm.davidson.edu/ChemistryApplets/kinetics/ Chemistry applets]