"जल टरबाइन": अवतरणों में अंतर

छो बॉट से अल्पविराम (,) की स्थिति ठीक की।
छो बॉट: अंगराग परिवर्तन
पंक्ति 4:
पनचक्कियाँ विभिन्न प्रकार से बनाई जाने पर भी बड़ी ही सरल प्रकार की युक्तियाँ (devices) हैं जिनका प्रयोग प्रागैतिहासिक काल से ही शक्ति उत्पादन करने के लिए होता चला आया है। समय समय पर आवश्यकताओं तथा परिस्थितियों से प्रेरित होकर लोगों ने इनमें अनेक सुधार किए, अत: जल टरबाइन भी पनचक्की का ही विकसित रूप है। बीसवीं शताब्दी के पूर्वार्ध से तो इनका इतना उपयोग बढ़ गया है कि इनके द्वारा लगभग सभी सभ्य देशों में जगह जगह, छोटे बड़े अनेक जल-विद्युत [[शक्ति-गृह]] बनाए जाने लगे। इस कारण सुदूर जलहीन देहातों में भी बड़े सस्ते भाव पर बिजली प्राप्त होने लगी और नाना प्रकार के उद्योग धंधों के विकास को प्रत्साहन मिला।
 
== सिद्धान्त ==
जिन सिद्धांतों के आधार पर इन संयंत्रों की अभिकल्पना की जाती है, वे सभी प्रकार के प्रथम चालक यंत्रों में लागू होते हैं।
 
जल राशि में निहित स्थितिज ऊर्जा का गतिज ऊर्जा में परिवर्तन कैसे होता है, इसे संक्षेप में समझने के लिए कल्पना कीजिए कि कुछ ऊँचाई पर स्थित एक टंकी में से पानी की एक धारा उसी के नीचे स्थित जलाशय में गिर रही है। इस टंकी में भरे प्रति किलोग्राम पानी में, ऊँचाई के कारण कुछ जूल स्थितिज ऊर्जा निहित है। जब यह पानी नीचे गिरता है तब नीचे गिरते समय, यह स्थितिज ऊर्जा क्रमश: गतिज ऊर्जा में परिवर्तित होने लगती है और जब वह धारा नीचेवाले जलाशय की जलतल रेखा पर पहुँचती है तब उसकी समस्त स्थितिज ऊर्जा गतिज ऊर्जा में परिणत हो चुकती है। इस जल-तल-रेखा तक पहुँचते समय यदि उस एक किलोग्राम पानी का वेग '''V''' मीटर प्रति सेंकड हो तो उसमें 0.5 V<sup>2</sup> जूल गतिज ऊर्जा होगी। यदि टंकी की ऊँचाई '''h''' मीटर मान लें तो टंकी के प्रति किलोग्राम पानी में g.H जूल स्थितिज ऊर्जा होगी। अत: नीचे पहुँचने पर। स्थितिज ऊर्जा की हानि = गतिज ऊर्जा की प्राप्ति, अर्थात्‌ अब ज्यों ही वह पानी जलाशय में प्रविष्ट होगा, उसके पानी में विक्षोभ उत्पन्न हो जाएगा और फिर थोड़ी देर में शांत भी हो जायगा। इस उदाहरण में, ऊपर से आनेवाले पानी में निहित गतिज ऊर्जा जलाशय के पानी में विक्षोभ उत्पन्न करके ही बरबाद हो गई और उससे कोई उपयोगी कार्य नहीं हो सका। यदि वही पानी एक नल में से होकर नीचे आता तो वह उस नल के मुहाने पर दाब उत्पन्न कर किसी जलचक्र अथवा इंजन को चला सकता था। जब भी किसी स्थान पर जल के प्रवाह अथवा वर्चस (head) द्वारा प्राप्त ऊर्जा की सहायता से कोई जलचालित मोटर या टरबाइन चलाकर शक्ति उन्पादन करने का विचार किया जाता है, तो उसके पहले आस पास में स्थित जलराशि अथवा जलस्रोतों से प्राप्त होने वाली ऊर्जा का यथासाध्य सही अनुमान लगा लिया जाता है।
 
== जल चक्कियाँ ==
जल चक्कियों (वाटर व्हील) का इतिहास काफी पुराना है। साथ ही, पानी का ऊर्जा के तौर पर इस्तेमाल भी काफी अरसे से हो रहा है. यहां तक कि रोम वासी कभी एक तरह की टरबाइन जल चक्कियों को कृषि के लिए प्रयोग में लाते थे।
 
पंक्ति 15:
 
[[चित्र:Water Turbine Chart.png|center|thumb|500px|जल टरबाइनों के उपयोग का चार्ट]]
== जलचालित मोटरों का वर्गीकरण ==
यह वर्गीकरण निम्नलिखित प्रकार है :
# जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा चालित चक्र
पंक्ति 21:
# प्रतिक्रिया टरबाइन (Reaction Turbine)
 
=== जलधारा के प्रवाह तथा गुरुत्वाकर्षण जनित ऊर्जा चालित चक्र ===
ये चक्र जलधारा के प्रवाह में रुकावट डालने पर होलेवाले [[संघट्ट]] (impact) के कारण अथवा चक्र की डोलचियों में भरे पानी के भार के कारण चला करते हैं।
 
पंक्ति 35:
यह भी अध:प्रवाही चक्र का ही परिष्कृत रूप है। इसकी कोनियानुमा पंखुड़ियों में पानी, चक्र की धुरी के तल से कुछ ऊँचाई पर स्थित पंखुड़ियों में भरना आरंभ होता है और उनके नीचे आने तक उन्हों में भरा रहता है। चक्र की खोल भी इस पानी को उनमें भरा रखने में कुछ सहायता करती है, अत: यह चक्र मुख्यतया पानी के भार के कारण ही घूमता है। मध्यप्रवाही चक्र भी दो प्रकार के होते हैं। एक तो मध्योच्च प्रवाही (High Breast), जैसा उपर्युक्त वर्णित चित्र में दिखाया गया है और दूसरा अध:मध्यप्रवाही (Low Breast) कहलाता है। इसकी पंखुड़ियों में पानी धुरी के तल से कुछ नीचे की पंखुड़ियों में भरना आरंभ होता है, जिसमें पानी के भार और प्रवाहजनित, दोनों प्रकार की, ऊर्जाओं का उपयोग होता है। इन चक्रों की कार्यक्षमता 50 प्रति शत से लेकर 80 प्रति शत तक हो सकती है, जो इनकी बनावट तथा आकार पर निर्भर करती है। इनका प्रयोग 19वीं शताब्दी के मध्य तक होता रहा, फिर बंद हो गया।
 
==== उर्ध्व प्रवाही चक्र ====
इसका कार्यक्षमता 70 प्रतिशत से लेकर 85 प्रतिशत तक पहुँच जाती है, जो आधुनिक जल टरबाइनों के लगभग समकक्ष ही है यह अपेक्षाकृत आधुनिक प्रकार का गुरुत्वाकर्षणजनित ऊर्जाचालित जलचक्र है, जिसका प्रयोग थोड़ी मात्रा में विद्युच्छक्ति उत्पन्न करने के लिए आजकल भी सहायक मोटर के रूप में होता है तथा अच्छा काम देता है।
 
=== आवेगचक्र और आवेग टरबाइन ===
ये किसी तुंग (nozzle) में से निकलनेवाले जल की अत्यधिक वेगयुक्त प्रधार (jet) की [[गतिज ऊर्जा]] द्वारा चलते हैं। इस प्रकार के आवेगचक्रों का वहीं उपयोग होता है जहाँ पर पानी की मात्रा तो सीमित होती है लेकिन उसका वर्चस्‌ 300 से 3,000 फुट तक ऊँचा होता है।
 
पंक्ति 52:
* आर्कीमिडीज स्क्रू टरबाइन (Archimedes' screw turbine)
 
=== प्रतिक्रिया टरबाइन (Reaction Turbine) ===
इसमें पानी की गतिज ऊर्जा तथा [[दाब]] दोनों का ही उपयोग होता है। ये वहीं लगाए जाते हैं जहाँ परिस्थितियाँ आवेगचक्र तथा आवेग टरबाइनों के लिए बताई परिस्थितियों से विपरीत होती हैं, अर्थात्‌ जहाँ पानी अल्प वर्चस्‌ युक्त होते हुए भी विपुल मात्रा में प्राप्त हो सकता है। इस पानी का वर्चस्‌ 5 से लेकर 500 फुट तक हो सकता है।
 
पंक्ति 60:
: 1. त्रैज्य बहिर्प्रवाही, 2. त्रैज्य अंत:प्रवाही, 3. अक्षीय प्रवाही और 4. मिश्रप्रवाही
 
==== फूर्नेरॉन (Fourneyron) का टरबाइन ====
फूर्नेरॉन नामक एक फ्रांसीसी इंजीनियर ने बार्कर मिल के सिद्धांतानुसार केद्रीय जलमार्ग से बाहर की तरफ त्रैज्य दिशा में बहने के लिए मार्गदर्शक तुंडों को तो स्थिर प्रकार का बनाकर, उनके बाहर की तरफ घूमनेवाला पंखुडीयुक्त चक्र बनाया, [[http://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Berry_Schools'_Old_Mill%2C_Floyd_County%2C_Georgia.jpg/220px-Berry_Schools'_Old_Mill%2C_Floyd_County%2C_Georgia.jpg]] [[http://upload.wikimedia.org/wikipedia/en/thumb/0/0d/Agricola1.jpg/220px-Agricola1.jpg]
 
इसमें प केंद्रीय कक्ष है, जिसमें पानी प्रविष्ट होकर त्रैज्य दिशा में फ चिह्नित तुंड में जाकर चक्र की ब चिह्नित पंखों को घुमाता हुआ बाहर निकल जाता है। इसमें घ केंद्रीय धुरा है, जिससे डायनेमो आदि संबंधित रहता है। यह त्रैज्य बहिर्प्रवाही टरबाइन का नमूना है।[[http://upload.wikimedia.org/wikipedia/en/thumb/0/0d/Agricola1.jpg/220px-Agricola1.jpg]]
 
==== फ्रैंसिस का अंत:प्रवाही टरबाइन ====
इसका अभिकल्प जे0 बी0 फ्रैंसिस नामक सुविख्यात अमरीकन इंजीनियर ने बनाया था। इसमें टोंटियों में से पानी बाहर की ओर से त्रैज्य दिशा में प्रविष्ट होकर, भीतर की ओर केंद्र के निकट घूमनेवाले पंखों को ढकेलकर चलाता हुआ, नीचे को धुरी के चारों तरफ होता हुआ, बाहर निकल जाता है।
 
==== कप्लान (Kaplan) टरबाइन ====
 
==== टाइसन (Tyson) टरबाइन ====
==== गोर्लोव (Gorlov) टरबाइन ====
 
== टरबाइनों के धावक चक्र (Runner) ==
[[चित्र:Water turbine runners.jpg|right|thumb|300px|विभिन्न प्रकार के धावक : (बाएं से दाएँ)<br>पेल्टन टर्बाइन का धावक, फ्रांसिस टर्बाइन के दो तरह के धावक, कप्लन टरबाइन का धावक]]
टरबाइनों का घूमनेवाला चक्र जिसकी परिधि पर डोलचियाँ अथवा पंख लगे होते हैं, ''''धावक'''' कहलाता है। टरबाइनों का यही प्रमुख अवयव है जिसकी उत्तम बनावट तथा संतुलन पर उनकी कार्यक्षमता तथा शक्ति निर्भर करती है। दो प्रकार को टरबाइनें प्राय: अधिक काम आती हैं, एक तो त्रैज्य अंत:प्रवाही प्रतिक्रियात्मक और दूसरी आवेगात्मक। प्रथम प्रकार में से फ्रैंसिस की टरबाइन है, जो 100 से लेकर 500 फुट तक के वर्चस्‌युक्त जल के उपयुक्त है। आवश्यकता पड़ने पर 600 फुट वर्चस्‌ के जल का भी इनके साथ उपयोग किया जा सकता है।
पंक्ति 82:
मिश्रप्रवाही टरबाइनों का धावनचक्र फ्रैंसिस की टरबाइनों का ही परिष्कृत रूप है। इसका अभिकल्प अल्प वर्चस्‌ के जल से तीव्र गति तथा अधिक शक्ति प्राप्त करने के लिए किया गया है। यंत्रशास्त्र के नियमानुसार तीव्र गति के लिए धावनचक्र का व्यास कम करना पड़ता है, लेकिन ऐसा करने से उसकी शक्ति कम हो जाती है; अत: इस दोष को मिटाने के लिए इसका व्यास कम करके भी चौड़ाई बढ़ा दी गई है और पंखों की संख्या कम करके उन्हें केंद्र के निकट कर दिया गया है। इनका प्रयोग 5 से लेकर 150 फुट वर्चस्‌ तक के पानी के साथ किया जा सकता है।
 
=== धावनचक्रों की क्षमता ===
धावनचक्रों की क्षमता उनकी लाक्षणिक चाल (characteristic speed) द्वारा जाँची जाती है। यदि हम किसी धावनचक्र की विभिन्न नापों को इतना छोटा तथा संकुचित करते जायँ कि वह एक फुट वर्चस्‌ के जल से इतने चक्कर प्रति मिनट लगाने लगे कि उससे एक अश्वशक्ति मिल जाए तो चक्करों की उस संख्या को उस चक्र की लाक्षणिक चाल कहते हैं।
 
== जलचलित मोटरें==
ये अब भी थोड़ी मात्रा में शक्ति उत्पादन करने के लिए देहाती क्षेत्रों में प्रयुक्त होते हैं। इनके एकहरे चक्र का व्यास 60 फुट तक बना दिया जाता है तथा उसकी चौड़ाई इतनी रखी जाती है कि वह 3,000 घन फुट पानी प्रति मिनट से चला सके। ये पर्याप्त मंद गति से चला करते हैं, अत: इन्हें पूरे का पूरा इस्पात की चादरों तथा बेले हुए छड़ों से बनाया जाता है। चक्रों की भीतरी परिधियों पर दाँते बना दिए जाते हैं, जिनसे एक तरफ लगा हुआ छोटा दंतचक्र घूमकर अपने से संबंधित धुरी द्वारा यंत्रों को चलाता है। इनके केंद्रीय मुख्य धुरे से यंत्र प्राय: नहीं चलाए जाते, क्योंकि उनपर मरोड़ बल (twisting force) बहुत अधिक पड़कर उनके छूटने की आशंका उत्पन्न कर देता है।
 
== जल टरबाइनों की कार्यक्षमता ==
किसी भी जल टरबाइन की सैद्धांन्तिक [[अश्वशक्ति]] उसपर प्रति मिनट गिरनेवाले पानी के भार तथा जितनी ऊँचाई से वह गिरता है उसके गुणनफल के अनुपात से जानी जा सकती है। उदाहरणत: यदि स्लूस मार्ग द्वारा प्रति सेकेण्ड टरबाइन पर आनेवाले पानी का आयतन '''V''' घन मीटर हो, पानी का घनत्व '''d''' हो और उस पानी का वर्चस्‌ '''h''' मीटर हो तो उसकी सैद्धांतिक शक्ति '''V.d.g.h''' होगी। किसी चालक यंत्र की कार्यक्षमता उसकी सैद्धांतिक शक्ति, और वास्तविक प्रदत्त शक्ति का अनुपात समझी जाती है। प्रदत्त अश्वशक्ति को रोधन या ब्रेक अश्वाशक्ति (brake horse power, B.H.P.) भी कहते हैं; अत: किसी जल टरबाइन की दक्षता = HP / BHP. आजकल की विशाल जल टरबाइनों की दक्षता ९०% से भी अधिक होती है।
 
== सन्दर्भ ग्रन्थ ==
* वाटर ह्वील ऐंड टरबाइन मशीनरी, खंड 6, मशीनरी पब्लिशिंग कं. लि., लंदन,
* ऐंड्रू जैमिसन : हाइड्रॉलिक्स;