"कार्बन नैनोट्यूब": अवतरणों में अंतर

छो बॉट: लाघव चिह्न (॰) का उचित प्रयोग।
छो बॉट: अनावश्यक अल्पविराम (,) हटाया।
पंक्ति 4:
 
'''कार्बन नैनोट्यूब''' ('''CNTs''' ) एक बेलनाकार नैनोसंरचना वाले [[कार्बन के एलोट्रोप्स]] हैं. नैनोट्यूब को 28,000,000:1 तक के लंबाई से व्यास अनुपात के साथ निर्मित किया गया है,<ref>{{cite journal|author=L. X. Zheng|title=Ultralong Single-Wall Carbon Nanotubes|volume=3 |pages=673–676|year=2004|doi=10.1038/nmat1216|journal=Nature Materials|pmid=15359345|last2=O'Connell|first2=MJ|last3=Doorn|first3=SK|last4=Liao|first4=XZ|last5=Zhao|first5=YH|last6=Akhadov|first6=EA|last7=Hoffbauer|first7=MA|last8=Roop|first8=BJ|last9=Jia|first9=QX|issue=10
}}</ref> जो महत्वपूर्ण रूप से किसी भी अन्य द्रव्य से बड़ा है. इन बेलनाकार [[कार्बन]] [[अणुओं]] में नवीन [[गुण]] हैं जो उन्हें [[नैनोतकनीक]], [[इलेक्ट्रॉनिक्स]], [[प्रकाशिकी]] और [[पदार्थ विज्ञान]] के अन्य क्षेत्रों के कई अनुप्रयोगों के साथ-साथ [[वास्तु]] क्षेत्र में संभावित रूप से उपयोगी बनाते हैं. वे असाधारण शक्ति और अद्वितीय [[विद्युत्]] गुण प्रदर्शित करते हैं, और कुशल [[ताप परिचालक]] हैं. उनका अंतिम उपयोग, लेकिन, उनकी संभावित विषाक्तता और [[रासायनिक शोधन]] की प्रतिक्रिया में उनके गुण परिवर्तन को नियंत्रित करने के द्वारा सीमित हो सकता है.
 
नैनोट्यूब [[फुलरीन]] संरचनात्मक परिवार के सदस्य हैं, जिसमें गोलाकार [[बकिबॉल]] भी शामिल हैं. एक नैनोट्यूब के छोर को बकिबॉल संरचना के एक गोलार्द्ध के साथ ढका जा सकता है. उनका नाम उनके आकार से लिया गया है, चूंकि एक नैनोट्यूब का व्यास कुछ नैनोमीटर के क्रम में है (एक मानव बाल की चौड़ाई का लगभग 1/50,000 वां हिस्सा), जबकि वे लंबाई में कई मिलीमीटर हो सकते हैं (यथा 2008). नैनोट्यूब को [[एकल-दीवार नैनोट्यूब]] (SWNTs) और [[बहु-दीवार नैनोट्यूब]] (MWNTs) के रूप में वर्गीकृत किया गया है.
पंक्ति 23:
</gallery>
 
[[चित्र:CNTnames.png|thumb|300px|(n, m) नैनोट्यूब नामकरण योजना को एक ग्राफीन शीट में एक वेक्टर (Ch) के रूप में समझा जा सकता है जो यह बताता है की नैनोट्यूब को बनाने के लिए ग्राफीन शीट को कैसे "घुमाएं". T ट्यूब धुरी को इंगित करता है, और a1 और a2 रिअल स्पेस में ग्राफीन की इकाई वैक्टर है.]]
[[चित्र:CntHAADF.jpg|thumb|एक एकल-दीवार नैनोट्यूब को दिखाता इलेक्ट्रॉन माइक्रोग्राफ]]
 
अधिकांश एकल-दीवार नैनोट्यूब (SWNT) का व्यास करीब 1 नैनोमीटर होता है, जहां ट्यूब की लंबाई कई लाख गुना अधिक हो सकती है. एक ग्रेफाइट की एक-एटम मोटी परत को जिसे ग्रफीन कहा जाता है, एक निर्बाध सिलेंडर में लपेट कर एक SWNT की संरचना को संकल्पित किया जा सकता है. जिस तरीके से ग्रफीन शीट को लपेटा जाता है उसे सूचकांकों की एक जोड़ी (''n,m'' ) के द्वारा दर्शाया जाता है जिसे काइरल वेक्टर कहा जाता है. ''n'' और ''m'' पूर्णांक, ग्रफीन के हनिकौम [[क्रिस्टल लैटिस]] में दो दिशाओं में यूनिट [[वैक्टर]] की संख्या को दर्शाते हैं. यदि ''m'' = 0, नैनोट्यूब को "ज़िगज़ैग" कहा जाता हैं. यदि ''n'' = ''m'', नैनोट्यूब को "आर्मचेयर" कहा कहा जाता है. अन्यथा, उन्हें "काइरल" कहते हैं.
 
एकल-दीवार नैनोट्यूब, कार्बन नैनोट्यूब के एक महत्वपूर्ण प्रकार हैं क्योंकि ऐसा विद्युत् गुण प्रदर्शित करते हैं जो बहु-दीवार कार्बन नैनोट्यूब (MWNT) प्रकार में नहीं पाया जाता. एकल-दीवार नैनोट्यूब, सूक्ष्म इलेक्ट्रॉनिक्स के लिए सबसे अधिक संभावित उम्मीदवार हैं जो वर्तमान में इलेक्ट्रोनिक्स में प्रयुक्त होने वाले माइक्रो इलेक्ट्रोमेकेनिकल से परे है. इन पद्धतियों का सबसे मूल निर्माण खंड बिजली का तार है, और SWNTs उत्कृष्ट परिचालक हो सकते हैं.<ref>{{cite journal|first=J.W.|last=Mintmire|title=Are Fullerene Tubules Metallic?|journal=Physical Review Letters|volume=68|pages=631–634|date=3 February 1992|doi=10.1103/PhysRevLett.68.631|pmid=10045950|last2=Dunlap|first2=BI|last3=White|first3=CT|issue=5}}</ref><ref>{{Cite journal|last=Dekker|first=Cees|title=Carbon nanotubes as molecular quantum wires|year=1999|journal=Physics Today|volume=52|pages=22–28|url=http://www.physicstoday.org/vol-56/iss-2/pdf/vol52no5p22-28.pdf |format=PDF|doi=10.1063/1.882658}}</ref> एक SWNTs के उपयोगी अनुप्रयोग पहले intramolecular [[क्षेत्र प्रभाव ट्रांजिस्टर]] (FET) के विकास में है. SWNT FETs का प्रयोग करते हुए पहले इंट्रामोलीक्युलर [[लॉजिक गेट]] का उत्पादन भी हाल ही में संभव हो पाया है.<ref>{{Cite journal|title=Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes|first=R.|last=Martel|year=2001|journal=Physical Review Letters|volume=87|doi=10.1103/PhysRevLett.87.256805|page=256805|last2=Derycke|first2=V.|last3=Lavoie|first3=C.|last4=Appenzeller|first4=J.|last5=Chan|first5=K. K.|last6=Tersoff|first6=J.|last7=Avouris|first7=Ph.}}</ref> एक लॉजिक गेट का निर्माण करने के लिए आपके पास p-FET और एक n-FET, दोनों होना ज़रूरी है. क्योंकि SWNTs p-FETs होते हैं जब इनका संपर्क ऑक्सीजन से होता है और अन्यथा FETs रहते हैं, एक SWNT के आधे भाग को ऑक्सीजन के संपर्क में लाते हुए दूसरे आधे भाग को ऑक्सीजन से बचाना संभव है. इसका परिणाम एक एकल SWNT होता है जो समान अणु के भीतर p और n-प्रकार के दोनों FETs के साथ एक NOT लॉजिक गेट के रूप में कार्य करता है.
 
एकल-दीवार नैनोट्यूब का उत्पादन अभी भी बहुत महंगा है, यथा 2000 प्रति ग्राम करीब $1500, और अधिक किफायती संश्लेषण तकनीक का विकास कार्बन नैनोतकनीक के भविष्य के लिए महत्वपूर्ण है. यदि संश्लेषण का सस्ता तरीका नहीं खोजा जाता है, तो इसके कारण इस तकनीक को व्यावसायिक पैमाने पर लागू करना वित्तीय रूप से असंभव हो जाएगा.<ref name="nanotubes for electronics">{{Cite journal|first=Philip G.|last=Collins|year=2000|title=Nanotubes for Electronics|journal=Scientific American|pages=67–69|url=http://www.crhc.uiuc.edu/ece497nc/fall01/papers/NTs_SciAm_2000.pdf|format=PDF}}</ref> यथा 2007, कई आपूर्तिकर्ता यथा-उत्पादन आर्क डिस्चार्ज SWNTs ~ $50–100 प्रति ग्राम देते हैं.<ref>{{Cite web|title=Carbon Solutions, Inc.|url=http://www.carbonsolution.com}}</ref><ref>{{Cite web|title=CarboLex|url=http://carbolex.com}}</ref>
 
=== बहु-दीवार ===
पंक्ति 43:
 
=== नैनोबड ===
[[कार्बन नैनोबड]] नव निर्मित पदार्थ हैं जिन्हें पूर्व में खोजे गए कार्बन के एलोट्रोप्स, कार्बन नैनोट्यूब और फुलरीन को मिश्रित करके बनाया गया है. इस नए पदार्थ में, फुलरीन-सदृश बड, कोवैलेंट रूप से अंतर्निहित कार्बन नैनोट्यूब की बाहरी बगल दीवार से बद्ध होते हैं. इस संकर पदार्थ में फुलरीन और कार्बन नैनोट्यूब, दोनों के उपयोगी गुण हैं. विशेष रूप से, उन्हें असाधारण रूप से अच्छा फील्ड उत्सर्जक पाया गया है. यौगिक पदार्थ में, संलग्न फुलरीन अणु, नैनोट्यूब के फिसलन को रोकते हुए आणविक एंकर के रूप में कार्य कर सकते हैं, और इस प्रकार यौगिक के यांत्रिक गुणों में सुधार करते हैं.
 
=== कप स्टैक्ड कार्बन नैनोट्यूब ===
पंक्ति 110:
 
=== कठोरता ===
[[हीरे]] को सबसे कठोर पदार्थ माना जाता है, और यह अच्छी तरह से ज्ञात है कि ग्रेफाइट उच्च तापमान और उच्च दबाव की परिस्थितियों में हीरे में परिवर्तित हो जाता है. SWNTs को ''घरेलु तापमान'' पर 24 GPa से ऊपर का दबाव देते हुए एक अत्यंत कठोर पदार्थ के संश्लेषण में, एक अध्ययन सफल रहा. इस पदार्थ की कठोरता को एक [[नैनोअभिस्थापक]] से 62-152 GPa मापी गई. संदर्भ हीरे और [[बोरान नाइट्राइड]] नमूनों की कठोरता क्रमशः 150 और 62 GPa थी. संपीड़ित SWNTs का [[थोक मापांक]] 462-546 GPa था, जिसने हीरे के 420 GPa के मूल्य को पीछे कर दिया.<ref>
{{cite journal |author=M. Popov ''et al.''|title=Superhard phase composed of single-wall carbon nanotubes|journal=[[Phys. Rev. B]]|volume=65|pages=033408|year=2002|doi=10.1103/PhysRevB.65.033408|url=http://www.ssl.physics.ncsu.edu/publication/browse/getFileAction?fileref=2003-02-27+12:53:01&dbfilename=2002-PRB65-033408.pdf|format=free download PDF
}}</ref>
पंक्ति 120:
 
=== वैद्युत ===
ग्राफीन की सममिति और अद्वितीय इलेक्ट्रॉनिक संरचना की वजह से, एक नैनोट्यूब का ढांचा, इसके विद्युत गुणों को अत्यधिक प्रभावित करता है. दिए गए एक (''n'', ''m'' ) नैनोट्यूब के लिए, यदि ''n'' = ''m'', नैनोट्यूब धात्विक है; अगर ''n'' - ''m'', 3 का एक गुणज है, तो नैनोट्यूब एक अत्यंत छोटे बैंड अंतराल वाला अर्ध-परिचालक है, अन्यथा नैनोट्यूब एक मध्यम [[अर्धचालक]] है. इस प्रकार सभी आर्मचेयर ''(n'' = ''m'' ) नैनोट्यूब धात्विक हैं, और नैनोट्यूब (5,0), (6,4), (9,1), आदि अर्ध-परिचालक हैं. सिद्धांत रूप में, धात्विक नैनोट्यूब 4 × 10<sup>9</sup> A/cm<sup>2</sup> की एक विद्युत घनत्व धारा को ले जा सकता है, जो [[तांबा]] जैसी धातुओं से 1,000 गुना से अधिक बड़ा है.<ref>{{Cite journal|first=Seunghun|last=Hong|year=2007|title=Nanotube Electronics: A flexible approach to mobility|journal=Nature Nanotechnology|volume=2|pages=207–208|doi=10.1038/nnano.2007.89|pmid=18654263|last2=Myung|first2=S|issue=4}}</ref>
 
अंतरसम्बंधित आतंरिक खोल वाले बहु-दीवार कार्बन नैनोट्यूब, अपेक्षाकृत एक उच्च संक्रमण तापमान प्रदर्शित करते हैं T<sub>c</sub> = 12 [[K]]. इसके विपरीत, T<sub>c</sub> मूल्य, ऐसे परिमाण का एक क्रम है जो एकल-दीवार कार्बन नैनोट्यूब की रस्सियों के लिए न्यून है या हमेशा की तरह गैर अंतरसम्बंधित खोल वाले MWNTs के लिए.<ref>{{cite journal|author=J. Haruyama ''et al.''|title=Superconductivity in Entirely End-Bonded Multiwalled Carbon Nanotubes|journal=[[Physical Review Letters]]|volume=96|pages=057001|year=2006|doi=10.1103/PhysRevLett.96.057001|url=http://www.ee.aoyama.ac.jp/Labs/j-haru-www/paper/Haruyama%20SuperCNT%20PRL%20publication.pdf|format=free download PDF}}</ref>
पंक्ति 148:
|last5 = Dai
|first5 = H
|issue = 1}}</ref>, इसकी तुलना में तांबा, अपनी अच्छी [[तापीय चालकता]] के लिए ज्ञात एक धातु, 385 W.m<sup>−1</sup>.K<sup>−1</sup> संचारित करता है. कार्बन नैनोट्यूब का तापमान स्थिरता, अनुमानित रूप से, [[निर्वात]] में 2800 डिग्री सेल्सियस तक, और हवा में करीब 750 डिग्री सेल्सियस है.<ref>{{Cite journal|first=Erik|last=Thostenson|year=2005|title=Nanocomposites in context|journal=Composites Science and Technology|volume=65|pages=491–516|doi=10.1016/j.compscitech.2004.11.003|last2=Li|first2=C|last3=Chou|first3=T}}</ref>
 
=== दोष ===
तमाम पदार्थों की तरह, [[क्रिस्टलीयग्राफिक दोष]] की मौजूदगी पदार्थ के गुणों को प्रभावित करता है. दोष, परमाणु [[रिक्तियों]] के रूप में हो सकते हैं. ऐसे दोषों का उच्च स्तर, तनन-सामर्थ्य को 85% तक कम कर सकता है. कार्बन नैनोट्यूब दोष का एक दूसरा रूप [[स्टोन वेल्स दोष]] है, जो बांड के पुनर्निर्माण के द्वारा एक पंचकोण और सप्तकोण जोड़ी बनाता है. CNTs की बहुत छोटी संरचना के कारण, ट्यूब का तनन-सामर्थ्य एक चेन के समान उसके सबसे कमजोर वर्ग पर निर्भर रहता है, जहां सबसे कमजोर कड़ी की मज़बूती चेन की अधिकतम शक्ति बन जाती है.
 
क्रिस्टलीयग्राफिक दोष, ट्यूब के विद्युत गुण को भी प्रभावित करते हैं. एक आम परिणाम है - ट्यूब की दोषपूर्ण क्षेत्र के माध्यम से न्यून चालकता. आर्मचेयर-प्रकार के ट्यूब में एक दोष (जो बिजली के चालाक हैं) आसपास के क्षेत्र को अर्ध-परिचालक बना सकते हैं, और एकल मोनोएटोमिक रिक्तियां चुंबकीय गुण को प्रेरित करती हैं.<ref>कार्बन आधारित चुंबकत्व: धातु मुक्त कार्बन आधारित यौगिक और पदार्थ के चुंबकत्व का अवलोकन, तातियाना मकारोवा और फर्नांडो पालकियो द्वारा संपादित (Elsevier 2006)</ref>
 
क्रिस्टलीयग्राफिक दोष, ट्यूब के तापीय गुणों को अत्यधिक प्रभावित करते हैं. इस तरह के दोष, [[फोनन]] प्रकीर्णन को प्रेरित करते हैं, जो बदले में फोनन की विश्रांति दर को बढ़ाता है. यह [[मीन फ्री पाथ]] को कम कर देता है और नैनोट्यूब संरचनाओं की तापीय चालकता को कम कर देता है. फोनन ट्रांसपोर्ट सिमुलेशन से संकेत मिलता है कि स्थानापन्न सम्बन्धी दोष जैसे की नाइट्रोजन या बोरान, उच्च फ्रीक्वेंसी ऑप्टिकल फोनन के प्रकीर्णन को मुख्य रूप से प्रेरित करेंगे. हालांकि, बड़े पैमाने दोष जैसे [[स्टोन वेल्स दोष]], विस्तृत श्रृंखला की आवृत्तियों पर फोनन प्रकीर्णन को प्रेरित करता है जिसके परिणामस्वरूप तापीय चालकता में काफी कमी हो जाती है.<ref>{{Cite journal|first=N.|last=Mingo|year=2008|title=Phonon transmission through defects in carbon nanotubes from first principles|journal=Physical Review B|volume=77|page=033418|doi=10.1103/PhysRevB.77.033418|last2=Stewart|first2=D. A.|last3=Broido|first3=D. A.|last4=Srivastava|first4=D.}}</ref>
पंक्ति 161:
 
=== विषाक्तता ===
कार्बन नैनोट्यूब की विषाक्तता निर्धारण करना, नैनोतकनीक में सबसे अहम सवालों में से एक रहा है. दुर्भाग्य से, ऐसे शोध केवल अभी शुरू हुए हैं और आंकड़े अभी भी अपूर्ण और आलोचना के अधीन हैं. प्रारंभिक परिणाम, इस विषम पदार्थ की विषाक्तता के मूल्यांकन में होने वाली कठिनाइयों पर प्रकाश डालते हैं. मापदंड, जैसे की संरचना, आकार [[वितरण]], [[सतह क्षेत्र]], सतह रसायन, [[सतह प्रभार]], और [[पुंज]] स्थिति के साथ-साथ नमूनों की शुद्धता का कार्बन नैनोट्यूब की [[प्रतिक्रियाशीलता]] पर काफी प्रभाव पड़ता है. लेकिन, उपलब्ध आंकड़े स्पष्ट रूप से बताते हैं कि, कुछ परिस्थितियों के अंतर्गत, नैनोट्यूब झिल्ली बाधाओं को पार कर सकते हैं, जिससे यह संकेत मिलता है कि अगर कच्चे माल, अंगों तक पहुंचते हैं तो वे हानिकारक प्रभाव पैदा कर सकते हैं जैसे की सूजन और तंतुमय प्रतिक्रिया.<ref name="tox1">{{cite journal |author=Kolosnjaj J, Szwarc H, Moussa F |title=Toxicity studies of carbon nanotubes |journal=Adv Exp Med Biol. |volume=620 |pages=181–204 |year=2007 |pmid=18217344 |doi=10.1007/978-0-387-76713-0_14}}</ref>
 
[[कैम्ब्रिज विश्वविद्यालय]] की अलेक्सांड्रा पोर्टर के नेतृत्व में किये गए एक अध्ययन से पता चलता है कि CNTs मानव कोशिकाओं में प्रवेश कर सकते हैं और [[साइटोप्लास्म]] में जमा हो सकते हैं, जिससे कोशिका मृत्यु होती है.<ref name="tox2">{{Cite journal|last=Porter|first=Alexandra|title=Direct imaging of single-walled carbon nanotubes in cells|journal=Nature Nanotechnology|year=2007|volume=2|page=713|doi=10.1038/nnano.2007.347|last2=Gass|first2=Mhairi|last3=Muller|first3=Karin|last4=Skepper|first4=Jeremy N.|last5=Midgley|first5=Paul A.|last6=Welland|first6=Mark}}</ref>
 
कृंतक अध्ययन के परिणाम बताते हैं कि चाहे किसी भी प्रक्रिया से CNTs को संश्लेषित किया गया हो और धातुओं की कितनी भी मात्रा और प्रकार उनमें हो, CNTs [[सूजन]], [[उपकलाभ कणिकागुल्म]] (सूक्ष्म पिंड), [[फाइब्रोसिस]], और फेफड़ों में जैवरासायनिक/विषाक्त परिवर्तन पैदा करने में सक्षम थे.<ref>ज़ुम्वाल्दे, राल्फ और लौरा होड्सन (मार्च 2009). [http://www.cdc.gov/niosh/docs/2009-125/ "Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials"] राष्ट्रीय व्यावसायिक सुरक्षा और स्वास्थ्य संस्थान. NIOSH (DHHS) 2009-125 प्रकाशन.</ref> तुलनात्मक विषाक्तता अध्ययन ने, जिसमें चूहों को परीक्षा सामग्री का बराबर वजन दिया गया यह दर्शाया कि SWCNTs [[क्वार्ट्ज]] से ज्यादा जहरीले हैं, जिसे लंबे समय तक सांसों में घुलने की स्थिति में एक गंभीर व्यावसायिक स्वास्थ्य खतरा माना गया. एक नियंत्रण के रूप में, अल्ट्राफाइन [[कार्बन ब्लैक]] को न्यूनतम फेफड़ों की प्रतिक्रियाएं उत्पन्न करते हुए दिखाया गया.<ref name="tox3">{{cite journal |author=Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL |title=A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks |journal=Crit Rev Toxicol.|volume=36|pages=189–217 |year=2006 |pmid=16686422 |doi=10.1080/10408440600570233 |issue=3}}</ref>
 
[[अभ्रक तंतुओं]] के समान ही, CNTs का सुई की तरह का फाइबर आकार, यह डर पैदा करता है कि कार्बन नैनोट्यूब का व्यापक उपयोग [[मध्यकलार्बुध]] को जन्म दे सकता है, फेफड़ों की लाइनिंग का कैंसर जो अक्सर अभ्रक से संपर्क के कारण होता है. हाल ही में प्रकाशित एक पायलट अध्ययन इस भविष्यवाणी का समर्थन करता है.<ref name="tox5" /> वैज्ञानिकों ने, सीने की गुहा के मेसोथीलिअल परत के लिए एक स्थानापन्न के रूप में चूहे के शरीर गुहा के [[मेसोथेलिअल परत]] को एक लंबे बहु-दीवार कार्बन नैनोट्यूब में उद्घाटित किया है, और अभ्रक की तरह, लंबाई पर निर्भर, रोगजनक व्यवहार देखा जिसमें शामिल थी सूजन और घावों का गठन जिसे [[कणिकागुल्म]] के नाम से जाना जाता है.
अध्ययन के लेखक निष्कर्ष में कहते हैं:
:"यह काफी महत्वपूर्ण है, क्योंकि उत्पादों की एक विस्तृत श्रृंखला के लिए अनुसंधान और व्यापारिक समुदाय का इस धारणा के तहत कार्बन नैनोट्यूब में भारी निवेश करना जारी है कि वे अभ्रक से ज्यादा खतरनाक नहीं हैं. यदि दीर्घकालिक नुकसान से बचना है तो हमारे परिणाम सुझाते हैं कि बाज़ार में ऐसे उत्पादों को पेश करने से पहले, और अधिक शोध व बहुत सावधानी की जरूरत है.<ref name="tox5">{{Cite journal|last=Poland|first=CA|title=Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.|journal=Nature Nanotechnology|year=2008|volume=3|page=423|doi=10.1038/nnano.2008.111|last2=Duffin|first2=Rodger|last3=Kinloch|first3=Ian|last4=Maynard|first4=Andrew|last5=Wallace|first5=William A. H.|last6=Seaton|first6=Anthony|last7=Stone|first7=Vicki|last8=Brown|first8=Simon|last9=MacNee|first9=William}}</ref>
सह लेखक डॉ॰ एंड्रयू मेनार्ड के अनुसार:
:"यह अध्ययन वास्तव में सामरिक, अत्यधिक केंद्रित अनुसंधान की तरह है जिसकी आवश्यकता नैनोतकनीक के सुरक्षित और जिम्मेदार विकास को सुनिश्चित करने के लिए है. यह एक विशिष्ट नैनोस्केल पदार्थ पर विचार करता है जिसके बड़े पैमाने पर व्यावसायिक अनुप्रयोग होने की संभावना है और एक विशिष्ट स्वास्थ्य जोखिम के बारे में विशिष्ट सवाल पूछता है. हालांकि, एक दशक से पहले से वैज्ञानिक, लम्बे, पतले कार्बन नैनोट्यूब की सुरक्षा के बारे में चिंता दर्शाते रहे हैं, मौजूदा अमेरिकी संघीय नैनो पर्यावरण में कोई भी अनुसंधान, स्वास्थ्य और सुरक्षा जोखिम अनुसंधान रणनीति के इस सवाल का उत्तर देता है.<ref>[http://www.nanotechproject.org/news/archive/mwcnt/ Carbon Nanotubes That Look Like Asbestos, Behave Like Asbestos]</ref>
पंक्ति 177:
== संश्लेषण ==
[[चित्र:Mutr-nanotubes1.jpg|thumb|कार्बन नैनोट्यूब का पाउडर]]
पर्याप्त मात्रा में नैनोट्यूब के उत्पादन के लिए तकनीकें विकसित की गई हैं, जिसमें शामिल है [[आर्क डिस्चार्ज]], [[लेज़र पृथक्करण]], उच्च दबाव कार्बन मोनोआक्साइड ([[HiPCO]]), और [[रासायनिक वाष्प जमाव]] (सीवीडी). इनमें से अधिकांश प्रक्रियाएं निर्वात में या प्रक्रिया गैसों के साथ संपादित होती है. CNTs का CVD विकास, निर्वात में या वायुमंडलीय दबाव में हो सकता है. नैनोट्यूब की एक बड़ी मात्रा को इन विधियों द्वारा संश्लेषित किया जा सकता है; कटैलिसीस में सुधार और सतत विकास प्रक्रिया, CNTs को आर्थिक रूप से अधिक व्यावहारिक बना रही है.
 
=== आर्क डिस्चार्ज ===
पंक्ति 196:
 
CVD के दौरान, धातु उत्प्रेरक कणों की एक परत से एक सबस्ट्रेट तैयार किया जाता है, आम रूप से गिलट, कोबाल्ट,<ref>एन इनामी एट अल. "सिंथेसिस-कंडीशन डिपेंडेंस ऑफ़ कार्बन नैनोट्यूब ग्रोथ बाई एल्कोहोल केटालिटिक केमिकल वेपर डिपोसिशन मेथड" Sci. Technol. Adv. Mater. 8 (2007) 292 [http://dx.doi.org/10.1016/j.stam.2007.02.009 free download]</ref>, [[लोहा]], या एक संयोजन.<ref>{{cite journal|author=N. Ishigami |title=Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire|doi=10.1021/ja8024752|journal=J. Am. Chem. Soc.
|volume=130|pages=9918–9924|year=2008|pmid=18597459|last2=Ago|first2=H|last3=Imamoto|first3=K|last4=Tsuji|first4=M|last5=Iakoubovskii|first5=K|last6=Minami|first6=N|issue=30}}</ref> इन धातु नैनोकणों को अन्य तरीकों द्वारा भी उत्पादित किया जा सकता है, जैसे आक्साइड की कटौती या आक्साइड के ठोस घोल से. नैनोट्यूब के व्यास, जिन्हें बढ़ाना है वे धातु कणों के आकार से संबंधित होते हैं. इसे धातु के व्यवस्थित (या मुखौटा युक्त) जमाव, ताप देकर, या किसी धातु की परत के प्लाज्मा निक्षारण द्वारा नियंत्रित किया जा सकता है. सबस्ट्रेट को लगभग 700 डिग्री सेल्सियस तक गरम किया जाता है. नैनोट्यूब के विकास को आरंभ करने के लिए, रिएक्टर में दो गैसों को बहाया जाता है: एक प्रक्रिया गैस (जैसे [[अमोनिया]], [[नाइट्रोजन]] या [[हाइड्रोजन]]) और एक कार्बन-युक्त गैस (जैसे [[एसिटिलीन]], [[ईथीलीन]], [[इथेनॉल]] या [[मीथेन]]). नैनोट्यूब, धातु उत्प्रेरक के स्थलों पर बढ़ते हैं; कार्बन युक्त गैस को उत्प्रेरक कण की सतह पर तोड़ा जाता है, और कार्बन, कण के छोर पर चला जाता है जहां यह नैनोट्यूब का निर्माण करता है. इस क्रियाविधि का अभी भी अध्ययन किया जा रहा है. उत्प्रेरक कण, विकास प्रक्रिया के दौरान, उत्प्रेरक कण और सबस्ट्रेट के बीच आसंजन के आधार पर, बढ़ते नैनोट्यूब के मुहाने पर या नैनोट्यूब के तल पर बने रह सकते हैं.
 
कार्बन नैनोट्यूब के वाणिज्यिक उत्पादन के लिए CVD एक आम तरीका है. इस प्रयोजन के लिए, धातु नैनोकणों को एक उत्प्रेरक सहायक के साथ मिश्रित किया जाता है जैसे MgO या Al<sub>2</sub>O<sub>3</sub> ताकि धातु के कणों के साथ कार्बन फीडस्टॉक की उत्प्रेरक प्रतिक्रिया की अधिक उपज के लिए सतही क्षेत्र में वृद्धि की जा सके. इस संश्लेषण मार्ग में एक मुद्दा, एसिड प्रयोग, जो कभी-कभी कार्बन नैनोट्यूब के मूल ढांचे को नष्ट कर सकता है, के द्वारा उत्प्रेरक समर्थन को हटाना है. हालांकि, वैकल्पिक उत्प्रेरक समर्थन जो पानी में घुलनशील हैं, नैनोट्यूब विकास के लिए प्रभावी सिद्ध हुए हैं.<ref>{{Cite journal|first=A.|last=Eftekhari|title=High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition|doi=10.1016/j.carbon.2005.12.006|journal=Carbon|volume=44|page=1343|year=2006|last2=Jafarkhani|first2=P|last3=Moztarzadeh|first3=F}}</ref>
पंक्ति 202:
विकास प्रक्रिया (प्लाज्मा वर्धित रासायनिक वाष्प जमाव*) के दौरान यदि एक [[प्लाज्मा]], एक तीव्र विद्युत् क्षेत्र के अनुप्रयोग द्वारा उत्पन्न होता है, तो नैनोट्यूब विकास, विद्युत क्षेत्र की दिशा का अनुगमन करेगा.<ref>{{Cite journal|first=Z. F.|last=Ren|title=Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass|journal=Science|volume=282|page=1105|year=1998|doi=10.1126/science.282.5391.1105|pmid=9804545|last2=Huang|first2=ZP|last3=Xu|first3=JW|last4=Wang|first4=JH|last5=Bush|first5=P|last6=Siegal|first6=MP|last7=Provencio|first7=PN|issue=5391}}</ref> रिएक्टर के ज्यामिति को समायोजित करके, खड़े संरेखित कार्बन नैनोट्यूब को संश्लेषित करना संभव है<ref>[http://www.nano-lab.com/imagegallery.html SEM images &amp; TEM images of carbon nanotubes, aligned carbon nanotube arrays, and nanoparticles]</ref> (यानी, सबस्ट्रेट के लम्बवत), एक आकृति विज्ञान जो नैनोट्यूब से इलेक्ट्रॉन उत्सर्जन में रुचि रखने वाले शोधकर्ताओं की रूचि का केंद्र रहा है. प्लाज्मा के बिना, परिणामस्वरूप प्राप्त नैनोट्यूब अक्सर अनियमित उन्मुख होते हैं. प्रतिक्रिया की कुछ स्थितियों के तहत, यहां तक कि एक प्लाज्मा के अभाव में, नजदीकी अंतराल में रखे नैनोट्यूब, एक ऊर्ध्वाधर वृद्धि बनाए रखते हैं जो एक जंगल के कालीन से मिलते-जुलते ट्यूबों के एक घने विन्यास में परिणत होता है.
 
नैनोट्यूब संश्लेषण के विभिन्न तरीकों में, औद्योगिक पैमाने पर जमाव के लिए CVD सबसे अधिक आशा दिखाता है, इसका कारण है इसकी कीमत/इकाई अनुपात, और क्योंकि CVD एक वांछित सबस्ट्रेट पर सीधे नैनोट्यूब निर्माण करने में सक्षम है, जबकि अन्य विकास तकनीक में नैनोट्यूब को एकत्र करना पड़ता है. विकास स्थान, उत्प्रेरक के ध्यानपूर्वक जमाव से नियंत्रित किये जा सकते हैं. 2007 में, [[मेजो विश्वविद्यालय]] के एक दल ने [[कपूर]] से कार्बन नैनोट्यूब निर्माण की एक उच्च दक्षता CVD तकनीक का प्रदर्शन किया.<ref>{{Cite journal|title=Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology|journal=Journal of Physics: Conference Series|volume=61|year=2007| page=643|url=http://www.iop.org/EJ/article/1742-6596/61/1/129/jpconf7_61_129.pdf |format=free download PDF}}</ref> राइस विश्वविद्यालय में शोधकर्ताओं ने, हाल ही में दिवंगत डा. रिचर्ड स्मौले के नेतृत्व में, विशेष प्रकार के नैनोट्यूब की बड़ी, और शुद्ध मात्रा के उत्पादन के तरीके को खोजने पर ध्यान केन्द्रित किया. उनके तरीके में एक एकल नैनोट्यूब से काटे गए कई छोटे बीजों से लंबे तंतुओं का विकास किया जाता है; परिणामस्वरूप प्राप्त सारे तंतुओं का व्यास मूल नैनोट्यूब के समान ही पाया गया और आशा है कि वे उसी प्रकार के होंगे जैसे मूल नैनोट्यूब हैं. परिणामस्वरूप प्राप्त नैनोट्यूब के वर्गीकरण और उपज में सुधार और विकसित किये गए ट्यूब की लंबाई की आवश्यकता है.<ref>{{Cite news|first=Jade|last=Boyd|title=Rice chemists create, grow nanotube seeds|publisher=Rice University|date=2006-11-17|url=http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=9070}}</ref>
 
बहु-दीवार नैनोट्यूब के CVD विकास का उपयोग कई कंपनियों द्वारा टन पैमाने पर सामग्री के उत्पादन के लिए किया जाता है<ref>[http://www.nano-lab.com NanoLab multiwalled carbon nanotubes, aligned carbon nanotube arrays, nanoparticles, nanotube paper,dispersant, nanowires]</ref>, जिसमें शामिल हैं [[नैनोलैब]], [[बायर]], [[अर्केमा]], [[नैनोसिल]], [[नैनोथिंक्स]],<ref>[http://www.nanothinx.com Nanothinx: Nanotubes, Nanomaterials, and Nanotechnology R&amp;D (Products)]</ref> [[हाईपीरियन कटैलिसीस]], [[मित्सुई]], और [[शोवा ड़ेंको]].
 
==== सुपर-विकास CVD ====
पंक्ति 263:
}}</ref>
 
=== प्राकृतिक, आकस्मिक, और नियंत्रित फ्लेम वातावरण ===
[[फुलरीन]], और कार्बन नैनोट्यूब आवश्यक रूप से उच्च तकनीकी प्रयोगशालाओं के उत्पाद नहीं हैं; उन्हें आमतौर पर साधारण [[फ्लेम]] की तरह लौकिक स्थानों पर गढ़ा जाता है,<ref>{{Cite journal|first=J.M.|last=Singer|title=Carbon formation in very rich hydrocarbon-air flames. I. Studies of chemical content, temperature, ionization and particulate matter|journal=Seventh Symposium (International) on Combustion|year=1959}}</ref> जलती मीथेन,<ref>{{cite journal|last=Yuan|first=Liming|year=2001|title=Nanotubes from methane flames|journal=Chemical physics letters|volume=340|pages=237–241|doi=10.1016/S0009-2614(01)00435-3}}</ref> ईथीलीन,<ref>{{cite journal|last=Yuan|first=Liming|year=2001|title=Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes|journal=Chemical physics letters|volume=346|pages=23–28|doi=10.1016/S0009-2614(01)00959-9}}</ref> और बेंजीन,<ref>{{cite journal|last=Duan|first=H. M.|year=1994|title=Nanoclusters Produced in Flames|journal=Journal of Physical Chemistry|volume=98|pages=12815–12818|doi=10.1021/j100100a001|last2=McKinnon|first2=J. T.}}</ref> द्वारा उत्पादित किया जाता है और उन्हें घरेलु और बाहरी, दोनों हवा की [[कालिख]] में पाया गया है.<ref>{{cite journal|last=Murr|first=L. E.|year=2004|title=Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air|journal=Journal of Nanoparticle Research|volume=6|pages=241–251|doi=10.1023/B:NANO.0000034651.91325.40|last2=Bang|first2=J.J.|last3=Esquivel|first3=E.V.|last4=Guerrero|first4=P.A.|last5=Lopez|first5=D.A.}}</ref> हालांकि, इन स्वाभाविक रूप से होने वाली किस्मों के आकार और गुणवत्ता में बहुत ही अनियमित हो सकती है क्योंकि जिस वातावरण में उन्हें उत्पादित किया जाता है वह अक्सर अत्यंत अनियंत्रित होता है. इस प्रकार, यद्यपि कुछ अनुप्रयोगों में उनका इस्तेमाल किया जा सकता है, एकरूपता के उच्च स्तर पर उनमें कमी हो सकती है जो अनुसंधान और उद्योग, दोनों की कई जरूरतों को पूरा के लिए आवश्यक है. हाल के प्रयासों ने नियंत्रित फ्लेम वातावरण में अपेक्षाकृत अधिक एकरूप कार्बन नैनोट्यूब के उत्पादन पर ध्यान केंद्रित किया है.<ref>{{Cite journal|first=R.L.|last=Vander Wal|title=Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment|journal=Combust. Flame|volume=130|pages=37–47|year=2002|doi=10.1016/S0010-2180(02)00360-7}}</ref><ref>{{Cite journal|first=A.V.|last=Saveliev|title=Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame|doi=10.1016/S0010-2180(03)00142-1|journal=Combust. Flame|volume=135|pages=27–33|year=2003}}</ref><ref>{{Cite journal|first=M.J.|last=Height|title=Flame synthesis of single-walled carbon nanotubes|doi=10.1016/j.carbon.2004.05.010|journal=Carbon|volume=42|pages=2295–2307|year=2004}}</ref><ref>{{Cite journal|first=S.|last=Sen|title=Flame synthesis of carbon nanofibers and nanofibers composites containing encapsulated metal particles|journal=Nanotechnology|volume=15|pages=264–268|year=2004|doi=10.1088/0957-4484/15/3/005|last2=Puri|first2=Ishwar K}}</ref> इस तरह के तरीके में, बड़े पैमाने पर, कम लागत वाले नैनोट्यूब संश्लेषण की संभावनाएं हैं, हालांकि उन्हें तेज़ी से बढ़ रहे बड़े पैमाने पर CVD उत्पादन के साथ मुकाबला करना होगा.
 
=== अनुप्रयोग संबंधित मुद्दे ===
पंक्ति 300:
 
=== कागज बैटरी के रूप में ===
[[कागज बैटरी]] एक [[बैटरी]] है जिसे [[सेलूलोज़]], जो संरेखित कार्बन नैनोट्यूब से भरा है, की कागजनुमा पतली शीट का उपयोग करने के लिए अभिकल्पित किया गया है (जो अन्य चीज़ों के अलावा नियमित कागज का प्रमुख घटक है).<ref>{{cite news|url=http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php|title=Beyond Batteries: Storing Power in a Sheet of Paper|publisher=Eurekalert.org|date =August 13, 2007|accessdate=2008-09-15}}</ref> नैनोट्यूब, [[इलेक्ट्रोड]] के रूप में कार्य करते हैं; भंडारण उपकरणों को बिजली संचालित करने की अनुमति देते हैं. यह बैटरी, जो एक-लिथियम आयन बैटरी और एक [[सुपरसंधारित्र]], दोनों के रूप में काम करती है, एक पारंपरिक बैटरी की तुलना में लंबे समय तक, निरंतर बिजली उत्पादन और साथ ही साथ एक सुपरसंधारित्र की उच्च ऊर्जा का त्वरित विस्फोट प्रदान कर सकती है - और जबकि एक पारंपरिक बैटरी में कई अलग घटक शामिल होते हैं, एक कागज बैटरी, बैटरी के सभी घटकों को एक एकल ढांचे में एकीकृत करती है, और इसे अधिक ऊर्जा कुशल बनाती है.
 
=== औषधि वितरण के लिए एक पोत के रूप में ===
पंक्ति 309:
नैनोट्यूब के वर्तमान उपयोग और अनुप्रयोग, ज्यादातर थोक नैनोट्यूब के उपयोग तक सीमित हैं, जो नैनोट्यूब के असंगठित टुकड़े की राशि है. थोक नैनोट्यूब सामग्री, एक व्यक्तिगत ट्यूब के समान लचीली शक्ति प्राप्त नहीं कर सकते, लेकिन ऐसे स्वरूप, फिर भी कई अनुप्रयोगों के लिए पर्याप्त शक्ति पैदा कर सकते हैं. थोक कार्बन नैनोट्यूब का पहले ही, [[पॉलिमर]] में, थोक उत्पाद के यांत्रिक, तापीय और विद्युत गुणों में सुधार के लिए संमिश्रित तंतुओं के रूप में इस्तेमाल किया जा चुका है.
 
[[ईस्टन-बेल स्पोर्ट्स, इंक]], ज़िवेक्स के साथ साझेदारी में हैं, और अपने कई [[साइकिल]] घटकों में CNT प्रौद्योगिकी का उपयोग करते हैं - जिसमें शामिल है फ्लैट और राइज़र हैंडलबार, क्रैंक, फोर्क, सीटपोस्ट, स्टेम और एरो बार.
 
=== सौर सेल ===
[[न्यू जर्सी प्रौद्योगिकी संस्थान]] में विकसित सौर कोशिकाएं, सांप सदृश ढांचे के निर्माण के लिए कार्बन नैनोट्यूब और कार्बन [[बकिबॉल]] ([[फुलरीन]] के रूप में ज्ञात) के एक मिश्रण द्वारा गठित, कार्बन नैनोट्यूब काम्प्लेक्स का उपयोग करती हैं. बकिबॉल, इलेक्ट्रॉनों को फंसाते हैं, हालांकि वे इलेक्ट्रॉनों को प्रवाहित नहीं कर सकते. [[पॉलीमर]] को उत्तेजित करने के लिए सूरज की रोशनी जोड़ें, और बकिबॉल इलेक्ट्रॉनों को पकड़ लेगा. तांबे के तारों की तरह बर्ताव कर रहे नैनोट्यूब, तब इलेक्ट्रॉन या विद्युत् प्रवाह को बनाने में सक्षम होंगे.<ref>{{cite news|url=http://www.sciencedaily.com/releases/2007/07/070719011151.htm|title=New Flexible Plastic Solar Panels Are Inexpensive And Easy To Make|publisher=ScienceDaily|date=July 19, 2007}}</ref>
 
=== अल्ट्रासंधारित्र ===
विद्युतचुंबकीय और इलेक्ट्रॉनिक प्रणालियों के लिए MIT प्रयोगशाला, [[अल्ट्रासंधारित्र]] में सुधार करने के लिए नैनोट्यूब का उपयोग करती है. पारंपरिक अल्ट्रासंधारित्र में प्रयुक्त सक्रिय लकड़ी के कोयले में कई विभिन्न आकार के छोटे खोखले छेद होते हैं, जो विद्युत चार्ज को संग्रहित करने के लिए एक साथ एक बड़ी सतह का निर्माण करते हैं. चूंकि चार्ज को प्राथमिक चार्ज, यानी इलेक्ट्रॉनों में क्वान्टाइज़ किया जाता है, और ऐसे प्रत्येक प्राथमिक चार्ज को एक न्यूनतम जगह की आवश्यकता होती है, इलेक्ट्रोड सतह का एक महत्वपूर्ण अंश, भंडारण के लिए उपलब्ध नहीं होता, क्योंकि खोखले स्थान चार्ज की आवश्यकताओं के साथ संगत नहीं हैं. एक नैनोट्यूब इलेक्ट्रोड के साथ रिक्त स्थानों को आकार में बनाया जा सकता है - कुछ बहुत बड़े या बहुत छोटे - और परिणामस्वरूप, क्षमता में काफी वृद्धि की जानी चाहिए.<ref name="MIT">[http://lees.mit.edu/lees/battery_001.htm MIT LEES on Batteries.] MIT प्रेस विज्ञप्ति, 2006.</ref>
 
=== अन्य अनुप्रयोग ===
पंक्ति 322:
मई 2005 में, नैनोमिक्स इंक ने बाजार पर एक हाइड्रोजन सेंसर रखा जो एक सिलिकॉन प्लेटफोर्म पर कार्बन नैनोट्यूब को एकीकृत करता है. तब से नैनोमिक्स, कार्बन डाइऑक्साइड, नाइट्रस ऑक्साइड, ग्लूकोज, DNA खोज के क्षेत्र में ऐसे कई सेंसर अनुप्रयोगों को पेटेंट करवाता रहा है.
 
[[फ्रैंकलिन]], [[मैसाचुसेट्स]] का [[एइकोस इंक]] और [[सिलिकॉन वैली]], कैलिफोर्निया, का उनिडिम इंक, [[ईण्डीयम टिन ऑक्साइड]] (ITO) को प्रतिस्थापित करने के लिए कार्बन नैनोट्यूब के पारदर्शी, विद्युत प्रवाहकीय फ़िल्में विकसित कर रहे हैं. कार्बन नैनोट्यूब फ़िल्में, ITO फिल्मों की तुलना में यांत्रिक रूप से वस्तुतः अधिक मजबूत हैं, जो उन्हें उच्च विश्वसनीयता वाले [[टचस्क्रीन]] और लचीले डिस्प्ले के लिए आदर्श बनाता है. ITO को प्रतिस्थापित करने के लिए इन फिल्मों के उत्पादन को सक्षम बनाने में कार्बन नैनोट्यूब की मुद्रण योग्य जल-आधारित स्याही इच्छित हैं.<ref>{{cite journal |last=Simmons |first=Trevor |year=2007 |title=Large Area-Aligned Arrays from Direct Deposition of Single-Wall Carbon Nanotubes |journal=J. Am. Chem. Soc.|volume=129|pages=10088–10089|doi=10.1021/ja073745e |pmid=17663555 |last2=Hashim |first2=D |last3=Vajtai |first3=R |last4=Ajayan |first4=PM |issue=33}}</ref> कंप्यूटर, सेल फोन, [[PDA]], और [[ATM]] के डिस्प्ले के इस्तेमाल के लिए नैनोट्यूब फ़िल्में संभावनाएं प्रदर्शित करती हैं.
 
[[नैनोरेडियो]], एक एकल नैनोट्यूब वाला रेडियो रिसीवर, को 2007 में प्रदर्शित किया गया. 2008 में यह दिखाया गया कि नैनोट्यूब का एक शीट, यदि एक वैकल्पिक विद्युत् लगाया जाए तो लाउडस्पीकर के रूप में काम कर सकता है. ध्वनि की उत्पत्ति कंपन से नहीं बल्कि [[थर्मोअकुस्टिक]] के माध्यम से होती है.<ref>[http://technology.newscientist.com/article/dn15098-hot-nanotube-sheets-produce-music-on-demand.html Hot nanotube sheets produce music on demand] ''न्यू साइंटिस्ट न्यूज़'' 31 अक्तूबर 2008</ref>
पंक्ति 328:
कार्बन नैनोट्यूब की उच्च यांत्रिक शक्ति के कारण, उनसे चाकू-रोधी और बुलेटप्रूफ कपड़े बनाने के लिए अनुसंधान किया जा रहा है. नैनोट्यूब, प्रभावी ढंग से गोली को शरीर में प्रवेश करने से रोकेंगे, हालांकि गोली की गतिज ऊर्जा से हड्डियों के टूटने और आंतरिक रक्तस्राव की संभावना रहेगी.<ref>{{cite journal|first=T.|last=Yildirim|year=2000|title=Pressure-induced interlinking of carbon nanotubes|journal=[[Physical Review]] B|volume=62|pages=19|doi=10.1103/PhysRevB.62.12648|last2=Gülseren|first2=O.|last3=Kılıç|first3=Ç.|last4=Ciraci|first4=S.}}</ref>
 
कार्बन नैनोट्यूब से बने एक [[फ्लाईव्हील]] को, एक निर्वात में एक अस्थायी चुंबकीय धुरी पर अत्यधिक उच्च वेग से घुमाया जा सकता है, और संभवतः एक पारंपरिक जीवाश्म ईंधन की बराबरी वाले [[घनत्व]] पर ऊर्जा संग्रहित कर सकता है. चूंकि फ्लाईव्हील में बिजली के रूप में बहुत कुशलता से ऊर्जा जोड़ी और घटाई जा सकती है, इससे [[बिजली भंडारण]] का एक तरीका मिल सकता है, जिससे विद्युत ग्रिड अधिक कुशल और चर बिजली आपूर्तिकर्ता (जैसे पवन टर्बाइन) बन सकते हैं और ऊर्जा ज़रूरतों को पूरा करने में और अधिक उपयोगी हो सकते हैं. इस बात की व्यावहारिकता विशाल, अखंड नैनोट्यूब संरचनाओं के निर्माण की लागत और तनाव में उनकी असफलता दर पर काफी निर्भर करती है.
 
कार्बन नैनोट्यूब द्वारा [[रियोलोजिकल]] गुण भी बहुत प्रभावी ढंग से दिखाया जा सकता है.
पंक्ति 338:
2006 में ''कार्बन'' पत्रिका में मार्क मोंथिअक्स और व्लादिमीर कुज्नेत्सोव द्वारा लिखे संपादकीय ने कार्बन नैनोट्यूब के रोचक और अक्सर गलत रूप से पेश उत्पत्ति की व्याख्या की. शैक्षिक और लोकप्रिय साहित्य का एक बड़ा हिस्सा, अभ्रकीय कार्बन से निर्मित खोखले, नैनोमीटर आकार के ट्यूब का श्रेय 1991 में [[NEC]] के [[सुमिओ लिजिमा]] को देता है.<ref name="carbon">{{Cite journal|title=Who should be given the credit for the discovery of carbon nanotubes?|doi=10.1016/j.carbon.2006.03.019|first=Marc|last=Monthioux|journal=Carbon|volume=44|year=2006|url=http://www.cemes.fr/fichpdf/GuestEditorial.pdf |format=PDF|page=1621|last2=Kuznetsov|first2=V}}</ref>
 
1952 में एल.वी. रादुशकेविच और वी. एम. लुक्यानोविच ने सोवियत ''जर्नल ऑफ़ फिज़िकल केमिस्ट्री'' में कार्बन से बने 50 नैनोमीटर व्यास के ट्यूबों के स्पष्ट चित्र प्रकाशित किये.<ref>{{cite journal|last=Радушкевич|first=Л. В.|year=1952|title=О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте|journal=Журнал Физической Химии|volume=26|pages=88–95|url=http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|format=PDF|language=Russian|archiveurl=http://web.archive.org/web/20060827101001/http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|archivedate=2006-08-27}}</ref> मोटे तौर पर इस खोज पर किसी का ध्यान नहीं गया, चूंकि यह लेख रूसी भाषा में प्रकाशित किया गया था, और पश्चिमी वैज्ञानिकों की सोवियत प्रेस में पहुंच [[शीत युद्ध]] के दौरान सीमित ही थी. संभावना है कि कार्बन नैनोट्यूब इस तिथि से पहले उत्पादित किए गए थे, लेकिन [[संचरण इलेक्ट्रॉन माइक्रोस्कोप]] (TEM) के आविष्कार ने इन संरचनाओं को प्रत्यक्ष देखने की अनुमति दी.
 
1991 से पहले कार्बन नैनोट्यूब का उत्पादन किया गया और विभिन्न प्रकार की परिस्थितियों के तहत इसकी निगरानी की गई. ओबेरलिन, इंडो, और कोयामा द्वारा 1976 में प्रकाशित पेपर ने एक भाप-विकसित तकनीक का उपयोग करके स्पष्ट रूप से नैनोमीटर पैमाने के व्यास वाले खोखले कार्बन फाइबर को दिखाया.<ref>{{Cite journal|title=Filamentous growth of carbon through benzene decomposition|doi=10.1016/0022-0248(76)90115-9|first=A.|last=Oberlin|year=1976|volume=32|pages=335–349|journal=Journal of Crystal Growth}}</ref> इसके अतिरिक्त, लेखकों ने ग्राफीन की एक एकल-दीवार से बने एक नैनोट्यूब की TEM छवि को प्रदर्शित किया. बाद में, इंडो ने इस छवि को एकल-दीवार नैनोट्यूब के रूप में उद्धृत किया.<ref>{{Cite web|title=Carbon Fibers and Carbon Nanotubes (Interview, Nagano, Japan)| last=Endo|first=Morinobu|last2=Dresselhaus|first2=M. S.|date=October 26, 2002|url=http://web.mit.edu/tinytech/Nanostructures/Spring2003/MDresselhaus/i789.pdf |format=PDF}}</ref>
 
1979 में जॉन अब्राहमसन ने [[पेन्सिलवेनिया स्टेट यूनिवर्सिटी]] में कार्बन के 14वें द्विवार्षिक सम्मेलन में कार्बन नैनोट्यूब का सबूत पेश किया. सम्मेलन के इस पेपर में कार्बन नैनोट्यूब को कार्बन फाइबर के रूप में वर्णित किया गया जिसे आर्क डिस्चार्ज के दौरान कार्बन एनोड्स पर तैयार किया गया. इन तंतुओं के लक्षणों को प्रस्तुत किया गया और साथ ही साथ कम दबाव पर एक नाइट्रोजन वातावरण में उनके विकास के लिए परिकल्पना दी गई.<ref>{{Cite journal|title=Structure of Carbon Fibers Found on Carbon Arc Anodes|journal=Carbon|volume=37|year=1999|pages=1873|last=Abrahamson|first=John|last2=Wiles|first2=Peter G.|last3=Rhoades|first3=Brian L.|doi=10.1016/S0008-6223(99)00199-2}}</ref>
पंक्ति 346:
1981 में सोवियत वैज्ञानिकों के एक समूह ने, मोनोआक्साइड के थेर्मोकैटालिटिकल अनुपातहीनता द्वारा उत्पादित कार्बन नैनोकण के रासायनिक और संरचनात्मक लक्षण वर्णन के परिणामों को प्रकाशित किया. TEM छवियों और [[XRD]] पैटर्न का उपयोग करके, लेखकों ने सुझाव दिया कि उनके "कार्बन बहु-परतीय ट्यूबलर क्रिस्टल" का गठन ग्राफीन परतों को सिलेंडर के रूप में लपेटकर किया गया. उनका सोचना था कि एक सिलेंडर के रूप में ग्राफीन परतों के लपेटने द्वारा ग्राफीन हेक्सागोनल जाल के कई विभिन्न आयोजन हो सकते हैं. उन्होंने ऐसी व्यवस्था की दो संभावनाएं व्यक्त की: गोलाकार व्यवस्था (आर्मचेयर नैनोट्यूब) और एक कुंडलीनुमा, पेचदार व्यवस्था (काइरल ट्यूब).<ref>Izvestiya Akademii Nauk SSSR, Metals. 1982, #3, p.12-17 [रूसी में]</ref>
 
1987 में हाईपीरियन कटैलिसीस के हावर्ड जी. टेनेट को "बेलनाकार असतत कार्बन फिब्रिल्स" के उत्पादन के लिए एक अमेरिकी पेटेंट प्राप्त हुआ. यह फिब्रिल करीब 3.5 और करीब 70 नैनोमीटर के बीच एक स्थिर व्यास वाला..., लंबाई व्यास से 10<sup>2</sup> गुना, और उसका बाहरी क्षेत्र, कार्बन परमाणुओं का अनिवार्य रूप से निरंतर परतों वाला और इसका भीतरी कोर भिन्न था...."<ref>{{Ref patent|country=US|number=4663230|title=Carbon fibrils, method for producing same and compositions containing same|gdate=1987-05-05|fdate=1984-12-06|invent1=Tennent, Howard G.}}</ref>
 
आर्क से जली अभ्रक छड़ से बने अघुलनशील पदार्थ में, लिजिमा की 1991 में बहु-दीवार कार्बन नैनोट्यूब की खोज<ref>{{Cite journal|first=Sumio|last=Iijima|title=Helical microtubules of graphitic carbon|journal=Nature|volume=354|year=1991|pages=56–58|date=7 November 1991|doi=10.1038/354056a0}}</ref> ने और मिन्टमायर, डनलप, और व्हाइट की स्वतंत्र भविष्यवाणी कि यदि एकल-दीवार कार्बन नैनोट्यूब को बनाया जा सका, तो वे उल्लेखनीय संवाहन गुणों का प्रदर्शन करेंगे<ref>{{cite journal|first=J.W.|last=Mintmire|title=Are Fullerene Tubules Metallic?|journal=Physical Review Letters|volume=68|pages=631–634|date=1992|doi=10.1103/PhysRevLett.68.631|pmid=10045950|last2=Dunlap|first2=BI|last3=White|first3=CT|issue=5}}</ref>, ने उस प्रारंभिक चर्चा की उत्पत्ति में मदद की जो अब कार्बन नैनोट्यूब के साथ जुड़ा हुआ है. IBM के बेथुन और ''एकल-दीवार'' कार्बन नैनोट्यूब के NEC के लिजिमा की स्वतंत्र खोजों और एक आर्क डिस्चार्ज में संक्रमण धातु उत्प्रेरक जोड़कर विशेष रूप से उनके उत्पादन के तरीकों के बाद नैनोट्यूब अनुसंधान बहुत तेज़ी से बढ़ा.
आर्क डिस्चार्ज तकनीक को प्रारंभिक स्तर पर प्रसिद्ध बकमिन्स्टर फुलरीन उत्पादन के लिए अच्छी तरह जाना जाता था,<ref name="Kratschmer-C60">{{Cite journal|first=W.|last=Krätschmer|year=1990|title=Solid C60: a new form of carbon|journal=Nature|volume=347|pages=354–358|doi=10.1038/347354a0|last2=Lamb|first2=Lowell D.|last3=Fostiropoulos|first3=K.|last4=Huffman|first4=Donald R.}}</ref> और ऐसा प्रतीत हुआ कि इन परिणामों ने फुलरीन से संबंधित आकस्मिक खोजों का विस्तार किया. मास स्पेक्ट्रोमेट्री में फुलरीन का मूल अवलोकन प्रत्याशित नहीं था,<ref>{{Cite journal|first=H. W.|last=Kroto|year=1985|title=C60: Buckminsterfullerene|doi=10.1038/318162a0|journal=Nature|volume=318|pages=162–163|last2=Heath|first2=J. R.|last3=O'Brien|first3=S. C.|last4=Curl|first4=R. F.|last5=Smalley|first5=R. E.}}</ref> और क्रेटश्मर और हफमन द्वारा थोक-उत्पादन तकनीक का प्रयोग कई वर्षों तक किया गया यह अनुभव करने से पहले तक कि यह फुलरीन का उत्पादन करती है.<ref name="Kratschmer-C60" />