"कार्बन नैनोट्यूब": अवतरणों में अंतर

छो बॉट: छोटे कोष्ठक () की लेख में स्थिति ठीक की।
छो बॉट: डॉट (.) के स्थान पर पूर्णविराम (।) और लाघव चिह्न प्रयुक्त किये।
पंक्ति 110:
 
=== कठोरता ===
[[हीरे]] को सबसे कठोर पदार्थ माना जाता है और यह अच्छी तरह से ज्ञात है कि ग्रेफाइट उच्च तापमान और उच्च दबाव की परिस्थितियों में हीरे में परिवर्तित हो जाता है। SWNTs को ''घरेलु तापमान'' पर 24 GPa से ऊपर का दबाव देते हुए एक अत्यंत कठोर पदार्थ के संश्लेषण में, एक अध्ययन सफल रहा. इस पदार्थ की कठोरता को एक [[नैनोअभिस्थापक]] से 62-152 GPa मापी गई.गई। संदर्भ हीरे और [[बोरान नाइट्राइड]] नमूनों की कठोरता क्रमशः 150 और 62 GPa थी। संपीड़ित SWNTs का [[थोक मापांक]] 462-546 GPa था, जिसने हीरे के 420 GPa के मूल्य को पीछे कर दिया.<ref>
{{cite journal |author=M. Popov ''et al.''|title=Superhard phase composed of single-wall carbon nanotubes|journal=[[Phys. Rev. B]]|volume=65|pages=033408|year=2002|doi=10.1103/PhysRevB.65.033408|url=http://www.ssl.physics.ncsu.edu/publication/browse/getFileAction?fileref=2003-02-27+12:53:01&dbfilename=2002-PRB65-033408.pdf|format=free download PDF
}}</ref>
पंक्ति 193:
=== रासायनिक वाष्प जमाव (CVD) ===
[[चित्र:PICT0111.JPG|thumb|प्लाज्मा वर्धित रासायनिक वाष्प जमाव से विकसित किये जाते नैनोट्यूब]]
कार्बन के उत्प्रेरक भाप चरण जमाव की पहली सूचना 1959 में दी गई थी,<ref>{{Cite journal|first=P. L.|last=Walker Jr.|journal=J. Phys. Chem.|volume=63|pages=133|year=1959|title=Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts. I. Properties of Carbon Formed|doi=10.1021/j150572a002|last2=Rakszawski|first2=J. F.|last3=Imperial|first3=G. R.}}</ref> लेकिन 1993 तक<ref>{{Cite journal|first=M.|last=José-Yacamán|title=Catalytic growth of carbon microtubules with fullerene structure|journal=Appl. Phys. Lett.|volume=62|page=657|year=1993|doi=10.1063/1.108857|last2=Miki-Yoshida|first2=M.|last3=Rendón|first3=L.|last4=Santiesteban|first4=J. G.}}</ref> इस प्रक्रिया द्वारा कार्बन नैनोट्यूब नहीं बनाए गए.गए। 2007 में, [[सिनसिनाटी विश्वविद्यालय]] (UC) में शोधकर्ताओं ने फर्स्टनैनो ET3000 कार्बन नैनोट्यूब विकास प्रणाली पर 18&nbsp;mm लंबाई के संरेखित कार्बन नैनोट्यूब विन्यास का विकास करने के लिए एक प्रक्रिया इजाद की.<ref>{{Cite news|title=UC Researchers Shatter World Records with Length of Carbon Nanotube Arrays|date=2007-04-27|last=Beckman|first=Wendy|publisher=University of Cincinnati|url=http://www.uc.edu/news/NR.asp?id=5700}}</ref>
 
CVD के दौरान, धातु उत्प्रेरक कणों की एक परत से एक सबस्ट्रेट तैयार किया जाता है, आम रूप से गिलट, कोबाल्ट,<ref>एन इनामी एट अल. "सिंथेसिस-कंडीशन डिपेंडेंस ऑफ़ कार्बन नैनोट्यूब ग्रोथ बाई एल्कोहोल केटालिटिक केमिकल वेपर डिपोसिशन मेथड" Sci. Technol. Adv. Mater. 8 (2007) 292 [http://dx.doi.org/10.1016/j.stam.2007.02.009 free download]</ref>, [[लोहा]], या एक संयोजन.<ref>{{cite journal|author=N. Ishigami |title=Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire|doi=10.1021/ja8024752|journal=J. Am. Chem. Soc.
पंक्ति 291:
नैनोट्यूब आधारित [[ट्रांजिस्टर]] बनाए गए हैं जो घरेलु तापमान पर काम करते हैं और जो एक एकल इलेक्ट्रॉन के प्रयोग से डिजिटल परिवर्तन करने में सक्षम हैं।<ref>{{Cite journal|last=Postma|first=Henk W. Ch.|year=2001|title=Carbon Nanotube Single-Electron Transistors at Room temperature|journal=Science|volume=293|doi=10.1126/science.1061797|pmid=11441175|page=76|last2=Teepen|first2=T|last3=Yao|first3=Z|last4=Grifoni|first4=M|last5=Dekker|first5=C|issue=5527}}</ref> नैनोट्यूब की प्राप्ति में एक प्रमुख बाधा है, बड़े पैमाने पर उत्पादन के लिए तकनीक का अभाव. हालांकि, 2001 में IBM शोधकर्ताओं ने बड़ी तादाद में नैनोट्यूब ट्रांजिस्टरों के निर्माण के तरीके का प्रदर्शन किया, बहुत कुछ सिलिकॉन ट्रांजिस्टर की तरह. उनकी प्रक्रिया "रचनात्मक विध्वंस" कहलाती है जिसमें [[वेफर]] पर दोषपूर्ण नैनोट्यूब का स्वत: विनाश भी शामिल है।<ref>{{Cite journal|first=Philip G.|last=Collins|title=Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown|journal=Science|volume=292|date=2001|pages=706–709|doi=10.1126/science.1058782|pmid=11326094|last2=Arnold|first2=MS|last3=Avouris|first3=P|issue=5517}}</ref>
 
IBM प्रक्रिया को आगे विकसित किया गया और दस बीलियन सही ढंग से संरेखित नैनोट्यूब जंक्शनों वाले एकल चिप वेफर्स बनाए गए.गए। इसके अलावा, यह भी दर्शाया गया कि गलत तरीके से संरेखित नैनोट्यूब को, मानक [[फोटोलिथोग्राफी]] उपकरण का उपयोग करते हुए स्वतः हटाया जा सकता है।<ref>{{Cite journal|last=Song|first=Jin|title=Scalable Interconnection and Integration of Nanowire Devices Without Registration|journal=Nano Letters|volume=4|year=2004|pages=915–919|doi=10.1021/nl049659j|last2=Whang|first2=Dongmok|last3=McAlpine|first3=Michael C.|last4=Friedman|first4=Robin S.|last5=Wu|first5=Yue|last6=Lieber|first6=Charles M.}}</ref>
 
पहला नैनोट्यूब इंटिग्रेटेड मेमोरी सर्किट 2004 में बनाया गया था। नैनोट्यूब की चालकता का विनियमन प्रमुख चुनौतियों में से एक रहा है। सतह के सूक्ष्म लक्षणों के आधार पर एक नैनोट्यूब एक सादे [[परिचालक]] के रूप में या एक अर्धपरिचालक के रूप में कार्य कर सकता है। गैर अर्धपरिचालक ट्यूब को हटाने के लिए एक पूर्ण स्वचालित विधि विकसित की गई है।<ref>{{Cite journal|first=Yu-Chih|last=Tseng|title=Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology|journal=Nano Letters|volume=4|year=2004|pages=123–127|doi=10.1021/nl0349707|last2=Xuan|first2=Peiqi|last3=Javey|first3=Ali|last4=Malloy|first4=Ryan|last5=Wang|first5=Qian|last6=Bokor|first6=Jeffrey|last7=Dai|first7=Hongjie}}</ref>
पंक्ति 340:
1952 में एल.वी. रादुशकेविच और वी. एम. लुक्यानोविच ने सोवियत ''जर्नल ऑफ़ फिज़िकल केमिस्ट्री'' में कार्बन से बने 50 नैनोमीटर व्यास के ट्यूबों के स्पष्ट चित्र प्रकाशित किये.<ref>{{cite journal|last=Радушкевич|first=Л. В.|year=1952|title=О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте|journal=Журнал Физической Химии|volume=26|pages=88–95|url=http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|format=PDF|language=Russian|archiveurl=http://web.archive.org/web/20060827101001/http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|archivedate=2006-08-27}}</ref> मोटे तौर पर इस खोज पर किसी का ध्यान नहीं गया, चूंकि यह लेख रूसी भाषा में प्रकाशित किया गया था और पश्चिमी वैज्ञानिकों की सोवियत प्रेस में पहुंच [[शीत युद्ध]] के दौरान सीमित ही थी। संभावना है कि कार्बन नैनोट्यूब इस तिथि से पहले उत्पादित किए गए थे, लेकिन [[संचरण इलेक्ट्रॉन माइक्रोस्कोप]] (TEM) के आविष्कार ने इन संरचनाओं को प्रत्यक्ष देखने की अनुमति दी.
 
1991 से पहले कार्बन नैनोट्यूब का उत्पादन किया गया और विभिन्न प्रकार की परिस्थितियों के तहत इसकी निगरानी की गई.गई। ओबेरलिन, इंडो और कोयामा द्वारा 1976 में प्रकाशित पेपर ने एक भाप-विकसित तकनीक का उपयोग करके स्पष्ट रूप से नैनोमीटर पैमाने के व्यास वाले खोखले कार्बन फाइबर को दिखाया.<ref>{{Cite journal|title=Filamentous growth of carbon through benzene decomposition|doi=10.1016/0022-0248(76)90115-9|first=A.|last=Oberlin|year=1976|volume=32|pages=335–349|journal=Journal of Crystal Growth}}</ref> इसके अतिरिक्त, लेखकों ने ग्राफीन की एक एकल-दीवार से बने एक नैनोट्यूब की TEM छवि को प्रदर्शित किया। बाद में, इंडो ने इस छवि को एकल-दीवार नैनोट्यूब के रूप में उद्धृत किया।<ref>{{Cite web|title=Carbon Fibers and Carbon Nanotubes (Interview, Nagano, Japan)| last=Endo|first=Morinobu|last2=Dresselhaus|first2=M. S.|date=October 26, 2002|url=http://web.mit.edu/tinytech/Nanostructures/Spring2003/MDresselhaus/i789.pdf |format=PDF}}</ref>
 
1979 में जॉन अब्राहमसन ने [[पेन्सिलवेनिया स्टेट यूनिवर्सिटी]] में कार्बन के 14वें द्विवार्षिक सम्मेलन में कार्बन नैनोट्यूब का सबूत पेश किया। सम्मेलन के इस पेपर में कार्बन नैनोट्यूब को कार्बन फाइबर के रूप में वर्णित किया गया जिसे आर्क डिस्चार्ज के दौरान कार्बन एनोड्स पर तैयार किया गया। इन तंतुओं के लक्षणों को प्रस्तुत किया गया और साथ ही साथ कम दबाव पर एक नाइट्रोजन वातावरण में उनके विकास के लिए परिकल्पना दी गई.गई।<ref>{{Cite journal|title=Structure of Carbon Fibers Found on Carbon Arc Anodes|journal=Carbon|volume=37|year=1999|pages=1873|last=Abrahamson|first=John|last2=Wiles|first2=Peter G.|last3=Rhoades|first3=Brian L.|doi=10.1016/S0008-6223(99)00199-2}}</ref>
 
1981 में सोवियत वैज्ञानिकों के एक समूह ने, मोनोआक्साइड के थेर्मोकैटालिटिकल अनुपातहीनता द्वारा उत्पादित कार्बन नैनोकण के रासायनिक और संरचनात्मक लक्षण वर्णन के परिणामों को प्रकाशित किया। TEM छवियों और [[XRD]] पैटर्न का उपयोग करके, लेखकों ने सुझाव दिया कि उनके "कार्बन बहु-परतीय ट्यूबलर क्रिस्टल" का गठन ग्राफीन परतों को सिलेंडर के रूप में लपेटकर किया गया। उनका सोचना था कि एक सिलेंडर के रूप में ग्राफीन परतों के लपेटने द्वारा ग्राफीन हेक्सागोनल जाल के कई विभिन्न आयोजन हो सकते हैं। उन्होंने ऐसी व्यवस्था की दो संभावनाएं व्यक्त की: गोलाकार व्यवस्था (आर्मचेयर नैनोट्यूब) और एक कुंडलीनुमा, पेचदार व्यवस्था (काइरल ट्यूब).<ref>Izvestiya Akademii Nauk SSSR, Metals. 1982, #3, p.12-17 [रूसी में]</ref>
पंक्ति 353:
नैनोट्यूब की खोज एक विवादास्पद मुद्दा बनी हुई है, खासकर इसलिए क्योंकि शोध में शामिल कई वैज्ञानिक नोबेल पुरस्कार के संभावित उम्मीदवार हो सकते हैं। कई लोगों का मानना है कि 1991 में लिजिमा की रिपोर्ट विशेष महत्व की है क्योंकि इसने कार्बन नैनोट्यूब को समग्र रूप से वैज्ञानिक समुदाय की जानकारी में पहुंचा दिया. कार्बन नैनोट्यूब की खोज के इतिहास की समीक्षा के लिए संदर्भ देखें.<ref name="carbon" />
 
नैनोट्यूब खोज के मामले के समान ही एक प्रश्न यह है कि सबसे पतला संभव कार्बन नैनोट्यूब क्या है। संभावित उम्मीदवार हैं: 2000 में सूचित करीब 0.40&nbsp;nm व्यास के नैनोट्यूब; लेकिन वे स्वतंत्र खड़े नहीं हैं, बल्कि जिओलाइट क्रिस्टल में संलग्न हैं<ref>{{cite journal|doi=10.1038/35040702|year=2000|last1=Tang|first1=Z. K.|last2=Wang|first2=N.|last3=Li|first3=G. D.|last4=Chen|first4=J. S.|journal=Nature|volume=408|pages=50}}</ref> या बहु-दीवार नैनोट्यूब के सबसे भीतरी खोल हैं।<ref>{{cite journal|doi=10.1038/35040699|year=2000|last1=Qin|first1=Lu-Chang|last2=Zhao|first2=Xinluo|last3=Hirahara|first3=Kaori|last4=Miyamoto|first4=Yoshiyuki|last5=Ando|first5=Yoshinori|last6=Iijima|first6=Sumio|journal=Nature|volume=408|pages=50}}</ref> बाद में, केवल 0.3&nbsp;nm व्यास वाले MWNTs के भीतरी खोल की खबर दी गई.गई।<ref>{{cite journal|doi=10.1103/PhysRevLett.92.125502|title=Smallest Carbon Nanotube Is 3  Å in Diameter|year=2004|last1=Zhao|first1=X.|last2=Liu|first2=Y.|last3=Inoue|first3=S.|last4=Suzuki|first4=T.|last5=Jones|first5=R. O.|last6=Ando|first6=Y.|journal=Physical Review Letters|volume=92|pages=125502|pmid=15089683|issue=12}}</ref> सितम्बर 2003 तक, सबसे पतला मुक्त-खड़ा नैनोट्यूब, 0.43&nbsp;nm व्यास का है।<ref>{{cite journal|doi=10.1021/nl034080r|title=Smallest Freestanding Single-Walled Carbon Nanotube|year=2003|last1=Hayashi|first1=Takuya|last2=Kim|first2=Yoong Ahm|last3=Matoba|first3=Toshiharu|last4=Esaka|first4=Masaya|last5=Nishimura|first5=Kunio|last6=Tsukada|first6=Takayuki|last7=Endo|first7=Morinobu|last8=Dresselhaus|first8=Mildred S.|journal=Nano Letters|volume=3|pages=887}}</ref>
 
== यह भी देखें ==