"क्रिया विभव": अवतरणों में अंतर

छो बॉट: चिप्पियों में माह नाम का लिप्यंतरण किया।
छो बॉट: विराम चिह्नों के बाद खाली स्थान का प्रयोग किया।
पंक्ति 3:
शरीर-विज्ञान में '''ऐक्शन पोटेंशिअल''' एक अल्प-जीवी घटना होती है जिसमें [[कोशिका]] की विद्युतीय झिल्ली क्षमता, रूढ़ प्रारूप पथ का अनुगमन करते हुए तेजी से चढ़ती और गिरती है। ऐक्शन पोटेंशिअल, कई प्रकार की पशु कोशिका में होते हैं, जिसे उत्तेजनीय कोशिका कहा जाता है, जिसमें शामिल हैं न्यूरॉन, मांसपेशी कोशिका और अंत:स्त्रावी कोशिका. न्यूरॉन्स में, कोशिका से कोशिका संचार में वे एक केंद्रीय भूमिका निभाते हैं। अन्य प्रकार की कोशिकाओं में, उनका मुख्य कार्य अंतर-कोशिकीय प्रक्रियाओं को सक्रिय करना है। मांसपेशी कोशिकाओं में, उदाहरण के लिए, एक ऐक्शन पोटेंशिअल, संकुचन में फलित होने वाली घटनाओं की श्रृंखला में पहला कदम है। {{Citation needed|date=March 2010}} अग्न्याशय की बीटा कोशिका में, वे इंसुलिन के स्राव को प्रेरित करते हैं।<ref name="pmid16464129">{{ cite journal | author = MacDonald PE, Rorsman P | title = Oscillations, intercellular coupling, and insulin secretion in pancreatic beta cells | journal = PLoS Biol. | volume = 4 | issue = 2 | pages = e49 | year = 2006 | month = February | pmid = 16464129 | pmc = 1363709 | doi = 10.1371/journal.pbio.0040049 | url = | issn = }}</ref> न्यूरॉन्स में ऐक्शन पोटेंशिअल को "तंत्रिका आवेग" या "स्पाइक्स" के रूप में भी जाना जाता है और न्यूरॉन द्वारा उत्पन्न ऐक्शन पोटेंशिअल का अस्थायी अनुक्रम उसका "स्पाइक ट्रेन" कहलाता है। एक न्यूरॉन जो एक ऐक्शन पोटेंशिअल उत्सर्जन करता है उसे अक्सर "फायर" करता हुआ कहा जाता है।
 
ऐक्शन पोटेंशिअल को कोशिका की प्लाज़्मा झिल्ली में सन्निहित विशेष प्रकार के वोल्टेज-गेटेड आयन चैनल द्वारा उत्पन्न किया जाता है।<ref name="pmid17515599">{{cite journal | author = Barnett MW, Larkman PM | title = The action potential | journal = Pract Neurol | volume = 7 | issue = 3 | pages = 192–7 | year = 2007 | month = June | pmid = 17515599 | doi = | url = http://pn.bmj.com/content/7/3/192.short | issn = }}</ref> इन चैनलों को तब बंद कर दिया जाता है जब झिल्ली क्षमता, कोशिका की विश्राम क्षमता के करीब होती है, लेकिन वे तेजी से खुलना शुरू हो जाते हैं जब यदि झिल्ली क्षमता सटीक रूप से परिभाषित आरंभिक मूल्य तक बढ़ जाती है। जब चैनल खुलते हैं, तो वे सोडियम आयनों के आवक की अनुमति देते हैं, जो झिल्ली क्षमता में एक आवक के प्रवाह की वृद्धि, जो परिवर्तन विद्युत-रासायनिक प्रवणता को परिवर्तित करता है, जो बदले में झिल्ली क्षमता में और वृद्धि करते हैं। इस क्रिया के परिणामस्वरूप और अधिक चैनल खुलते हैं, जो और अधिक विद्युत् धारा का उत्पादन करते हैं और इसी तरह आगे होता रहता है। यह प्रक्रिया विस्फोटक रूप से तब तक आगे बढ़ती रहती है जब तक कि सभी उपलब्ध आयन चैनल खुल नहीं जाते, जिसके फलस्वरूप झिल्ली क्षमता में एक विशाल उछाल आता है। सोडियम आयनों की तीव्र आमद, प्लाज्मा झिल्ली की ध्रुवाभिसारिता को पलट देती है और उसके बाद आयन चैनल तेज़ी से निष्क्रिय हो जाते हैं। सोडियम चैनलों के बंद होने पर, सोडियम आयन अब न्यूरॉन में प्रवेश नहीं कर सकते और वे सक्रिय रूप से प्लाज्मा झिल्ली पहुँचाया जाता है। [[पोटैशियम|पोटेशियम]] चैनल तब सक्रिय हो जाते हैं और वहां पोटेशियम आयनों की एक बाह्य धारा होती है, जो विद्युत्-रासायनिक प्रवणता को विश्राम स्थिति में वापस लाती है। एक ऐक्शन पोटेंशिअल के हो जाने के बाद, वहां एक क्षणिक नकारात्मक बदलाव होता है, जिसे अतिरिक्त पोटेशियम धाराओं के कारण आफ्टरहाइपरपोलराईजेशन या दु:साध्य अवधि कहा जाता है। यही वह क्रियावली है जो एक ऐक्शन पोटेंशिअल को उस तरीके से वापस यात्रा करने से रोकती है जिस तरीके से वह आया होता है।
 
पशु कोशिकाओं में, ऐक्शन पोटेंशिअल के दो मुख्य प्रकार हैं, पहला प्रकार वोल्टेज-गेटेड सोडियम चैनलों द्वारा उत्पन्न होता है और दूसरा प्रकार वोल्टेज-गेटेड कैल्शियम चैनलों द्वारा. सोडियम-आधारित ऐक्शन पोटेंशिअल आम तौर पर एक मिलीसेकंड से कम समय तक चलते हैं, जबकि कैल्शियम-आधारित ऐक्शन पोटेंशिअल 100 मिलीसेकंड या ज्यादा समय तक चल सकते हैं। कुछ प्रकार के न्यूरॉन्स में, धीमे कैल्शियम स्पाइक, तेज़ी से उत्सर्जित सोडियम स्पाइक के लम्बे विस्फोट के लिए प्रेरणा शक्ति प्रदान करते हैं। दूसरी तरफ, हृदय की मांसपेशी कोशिकाओं में, एक आरंभिक तीव्र सोडियम स्पाइक, एक कैल्शियम स्पाइक की तीव्र शुरुआत को उकसाने के लिए एक "प्राइमर" प्रदान करता है, जो तब मांसपेशी संकुचन को उत्पन्न करता है।
पंक्ति 27:
{{Main|Ion|Diffusion|Electrochemical gradient|Electrophoretic mobility}}
 
[[चित्र:Diffusion.en.svg|thumb|right|250px|Ions (pink circles) will flow across a membrane from the higher concentration to the lower concentration (down a concentration gradient), causing a current. However, this creates a voltage across the membrane that opposes the ions' motion. When this voltage reaches the equilibrium value, the two balance and the flow of ions stops.<ref>Campbell Biology, 6th edition</ref>|alt = दो बीकर का एक योजनाबद्ध आरेख, प्रत्येक पानी से भरा हुआ (हल्का नीला) और एक अर्ध-पारगम्य झिल्ली जिसे एक डैश अनुलंब रेखा द्वारा दर्शाया गया है जो बीकर के भीतर जाते हुए बीकर के अन्दर की तरल सामग्री को दो बराबर भागों में बांटती है।बाएंहै। बाएं हाथ बीकर शून्य समय में एक प्रारंभिक अवस्था का प्रतिनिधित्व करता है जहाँ आयनों (गुलाबी हलकों) अधिक अन्य की तुलना में झिल्ली के एक तरफ अधिक है की संख्या. दाईं तरफ का बीकर एक बाद के समय बिंदु की स्थिति दर्शाता है, जिसके बाद आयन झिल्ली भर में उच्च से बीकर के प्रत्येक पक्ष पर आयनों की संख्या अब करीब बराबर की संकेन्द्रण है, कम खण्डों को प्रवाहित किया है।]]
 
जैविक जीवों के भीतर विद्युत संकेत, सामान्यतः, आयन द्वारा संचालित होते हैं।<ref>जॉनसन और वू, पी. 9.</ref> ऐक्शन पोटेंशिअल के लिए सबसे महत्वपूर्ण धनायन, सोडियम (Na<sup>+</sup>) और पोटेशियम (K<sup>+</sup>) है।<ref name="bullock_140_141">बुलोक, ओर्कंड और ग्रिनेल, पीपी 140-41..</ref> दोनों ही ''मोनोवैलेन्ट'' फैटायन हैं, जो एक एकल धनात्मक चार्ज वहन करते हैं। ऐक्शन पोटेंशिअल में कैल्शियम (Ca<sup>2+</sup>)<ref>बुलोक, ओर्कंड और ग्रिनेल, पीपी 153-54..</ref> भी शामिल हो सकता है, जो एक ''द्विसंयोजक'' फैटायन है जो दोहरा सकारात्मक चार्ज वहन करता है। क्लोराइड एनायन (Cl<sup>-</sup>) कुछ शैवाल के ऐक्शन पोटेंशिअल में एक बड़ी भूमिका निभाता है,<ref name="mummert_1991">{{cite journal | author = Mummert H, Gradmann D | year = 1991 | title = Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes | journal = Journal of Membrane Biology | volume = 124 | pages = 265–73 | pmid = 1664861 | doi = 10.1007/BF01994359 | issue = 3}}</ref> लेकिन अधिकांश जानवरों के ऐक्शन पोटेंशिअल में एक नगण्य भूमिका निभाता है।<ref>श्मिट-नीलसन, पी. 483.</ref>
पंक्ति 38:
प्रत्येक न्यूरॉन एक कोशिका झिल्ली में लिपटा होता है जो एक फोस्फोलिपिड बाइलेयर से बनी होती है। यह झिल्ली आयन के लिए लगभग अभेद्य होती है।<ref name="lieb_1986">{{cite book | author= Lieb WR, Stein WD | year = 1986 | chapter = Chapter 2. Simple Diffusion across the Membrane Barrier | title = Transport and Diffusion across Cell Membranes | publisher = Academic Press | location = San Diego | isbn = 0-12-664661-9 | pages = 69–112}}</ref> आयनों को न्यूरॉन के बाहर और अन्दर अंतरण के लिए, झिल्ली दो संरचनाओं को प्रदान करती है। आयन पंप, आयनों को लगातार अन्दर और बाहर करने के लिए कोशिका की ऊर्जा का उपयोग करते हैं। वे आयनों को अपने संकेन्द्रण प्रवणता के खिलाफ भेजकर (न्यून संकेन्द्रण के क्षेत्रों से उच्च संकेन्द्रण के क्षेत्रों के लिए), संकेन्द्रण भिन्नता का निर्माण करते हैं (न्यूरॉन के अंदर और बाहर). आयन चैनल तब इस संकेन्द्रण भिन्नता का उपयोग आयानों को अपने संकेन्द्रण प्रवणता के नीचे भेजने के लिए करते हैं (उच्च संकेन्द्रण के क्षेत्रों से न्यून संकेन्द्रण के क्षेत्रों की तरफ). हालांकि, आयन पंपों द्वारा सतत परिवहन के विपरीत, आयन चैनलों द्वारा परिवहन असतत है। वे सिर्फ अपने परिवेश के संकेतों की प्रतिक्रिया में खुलते और बंद होते हैं। आयन चैनलों के माध्यम से आयनों का यह परिवहन तब कोशिका झिल्ली के वोल्टेज को बदलता है। यही परिवर्तन हैं जो एक ऐक्शन पोटेंशिअल को लाते हैं। एक सादृश्य के रूप में, आयन पंप उस बैटरी की भूमिका निभाते हैं जो एक रेडियो सर्किट (आयन चैनलों) को एक संकेत (ऐक्शन पोटेंशिअल) संचारित करने के लिए अनुमति देते हैं।<ref name="Purves">{{cite book | author = D Purves, GJ Augustine, D Fitzpatrick, WC Hall, A-S LaMantia, JO McNamara, LE White | title = [http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.chapter.227 Neuroscience] | edition = 4th | publisher = Sinauer Associates | location = Sunderland, MA | isbn = 978-0-87893-697-7 | year = 2007}}</ref>
 
[[चित्र:Action potential ion sizes.svg|thumb|left|Despite the small differences in their radii,<ref>CRC Handbook of Chemistry and Physics, 83rd edition, ISBN 0-8493-0483-0, pp. 12–14 to 12–16.</ref> ions rarely go through the "wrong" channel. For example, sodium or calcium ions rarely pass through a potassium channel.|alt = सात क्षेत्र जिनकी त्रिज्या मोनो वेलेंट लिथियम, सोडियम, पोटेशियम, रूबिडीयाम, सीज़ियम (0.76, 1.02, 1.38, 1.52 और 1.67, क्रमशः) फैटायनों की त्रिज्या के आनुपातिक है), कैल्शियम द्विसंयोजक कटियन (1.00 क) और मोनो valent-क्लोराइड (1.81 एक).]]
 
==== झिल्ली क्षमता (मेम्ब्रेन पोटेंशिअल) ====
पंक्ति 50:
ऐक्शन पोटेंशिअल, विभिन्न समय पर खुलते और बंद होते विभिन्न आयन चैनलों का प्रकटीकरण है।<ref name="bullock_132">बुलोक, ओर्कंड और ग्रिनेल, पी. 132.</ref>
 
[[चित्र:Potassium channel1.png|thumb|right|Depiction of the open potassium channel, with the potassium ion shown in purple in the middle, and hydrogen atoms omitted. When the channel is closed, the passage is blocked.|alt = एक टेट्रामेरिक पोटेशियम चैनल का योजनाबद्ध आरेख जहां प्रत्येक मोनोमेरिक सब यूनिटों में से हर एक केंद्रीय सिमेट्रिक आयन प्रवाहकत्त्व के आसपास की व्यवस्था को दर्शाता है।पोरहै। पोर अक्ष को स्क्रीन के लम्बवत प्रदर्शित किया गया है। कार्बन, ऑक्सीजन और नाइट्रोजन परमाणु को क्रमशः स्लेटी, लाल और नीले द्वारा प्रदर्शित किया गया हैं। एक एकल पोटेशियम कटियन को चैनल के बीच में एक बैंगनी क्षेत्र के रूप में दर्शाया है।]]
 
एक चैनल की कई विभिन्न अवस्थाएं हो सकती हैं (प्रोटीन की विभिन्न रचना के अनुसार), लेकिन प्रत्येक ऐसी अवस्था या तो बंद है या खुली. सामान्य रूप से, बंद अवस्था या तो छिद्र के एक संकुचन के अनुरूप होगी - इसे आयन के लिए अगम्य बनाते हुए - या छिद्र को रोकते हुए प्रोटीन के एक अलग हिस्से के अनुरूप. उदाहरण के लिए, वोल्टेज-निर्भर सोडियम चैनल ''निष्क्रियता'' से गुज़रता है, जिसमें प्रोटीन का एक भाग छिद्र में सरक जाता है और उसे बंद कर देता है।<ref>{{cite journal |author=Cai SQ, Li W, Sesti F |title=Multiple modes of a-type potassium current regulation |journal=Curr. Pharm. Des. |volume=13 |issue=31 |pages=3178–84 |year=2007 |pmid=18045167 |doi=10.2174/138161207782341286}}</ref> यह निष्क्रियता, सोडियम धरा को बंद कर देती है और ऐक्शन पोटेंशिअल में एक महत्वपूर्ण भूमिका निभाती है।
पंक्ति 68:
जैसा कि उनकी गति को प्रेरित करने वाले आयन और बल खंड में वर्णित है, एक आयन की संतुलन या उलटाव क्षमता ट्रांसमेम्ब्रेन वोल्टेज का वह मान है जिस पर आयन के विसरण गतिविधि द्वारा उत्पन्न विद्युत् बल, उसके संकेन्द्रण प्रवणता के नीचे उस विसरण के आणविक बल के बराबर हो जाते हैं। किसी भी आयन के लिए संतुलन क्षमता को नर्न्स्ट समीकरण का उपयोग करते हुए परिकलित किया जा सकता है।<ref name="nernst">पूर्वेस ''एट अल.,'' 28-32. पीपी, बुलोक, ओर्कंड और ग्रिनेल, पीपी 133-134.; श्मिट-नीलसन, पीपी. 478-480, 596-597, जुंग पीपी. 33-35</ref><ref name="bernstein_1902_1912" /> उदाहरण के लिए, पोटेशियम आयनों के लिए पलटाव क्षमता निम्नानुसार होगा
 
:<math> E_{eq,K^+} = \frac{RT}{zF} \ln \frac{[K^+]_{o}}{[K^+]_{i}}, </math>
 
जहां:
पंक्ति 139:
एक ठेठ ऐक्शन पोटेंशिअल, एक पर्याप्त मजबूत विध्रुवण के साथ अक्षतंतु गिरिका<ref name="axon_hillock_origin">स्टीवेंस, पी. 49.</ref> पर शुरू होती है, जैसे एक प्रेरक जो बढ़ जाता है। यह विध्रुवण, कोशिका में अक्सर अतिरिक्त सोडियम कटियन के इंजेक्शन के कारण पैदा होता है; ये फैटायन एक व्यापक किस्म के स्रोतों से आ सकते हैं, जैसे रासायनिक सिनेप्सेस, संवेदी न्यूरॉन या पेसमेकर पोटेंशिअल से.
 
पोटेशियम के लिए प्रारंभिक झिल्ली पारगम्यता कम होती है, लेकिन अन्य आयनों से अधिक होती है, जो रेस्टिंग पोटेंशिअल को ''E'' <sub>K</sub>≈-75 mV के नज़दीक बना देती है।<ref name="resting_potential" /> यह विध्रुवण, झिल्ली में सोडियम और पोटेशियम, दोनों चैनलों को खोलता है और आयनों को क्रमशः अक्षतंतु के अन्दर और बाहर प्रवाहित होने की अनुमति देता है। अगर विध्रुवण छोटा है (मान लीजिये, ''V'' <sub>''m'' </sub> को -70 mV से बढ़ाते हुए -60 mV करना) बाहर जाती पोटेशियम धारा आवक सोडियम धरा को अभिभूत कर देती है और झिल्ली अपने सामान्य रेस्टिंग पोटेंशिअल, -70 mV के आसपास विध्रुवित हो जाती है।<ref name="failed_initiations" /> हालांकि, अगर विध्रुवण काफी बड़ा है, तो आवक सोडियम धारा, जावक पोटेशियम धारा से अधिक हो जाती है और एक भगोड़ा स्थिति (धनात्मक प्रतिक्रिया) उत्पन्न होती है: जितना ज्यादा आवक धारा होगी उतना ही अधिक ''V'' <sub>''m'' </sub> बढ़ जाता है, जो बदले में आवक धारा को और अधिक बढ़ा देता है।<ref name="positive_feedback" /> एक पर्याप्त मजबूत विध्रुवण (''V'' <sub>''m'' </sub> में वृद्धि) वोल्टेज के प्रति संवेदनशील सोडियम चैनलों को खोलता है; सोडियम के प्रति बढ़ती पारगम्यता ''V'' <sub>''m'' </sub> को सोडियम संतुलन वोल्टेज ''E'' <sub>Na</sub>≈ +55 mV के करीब ले जाती है। बदले में बढ़ता वोल्टेज और अधिक सोडियम चैनलों को खोलता है, जो ''V'' <sub>m</sub> को ''E'' <sub>Na</sub> की दिशा में और अधिक धकेलता है। यह धनात्मक प्रतिक्रिया तब तक जारी रहती है जब तक कि सोडियम चैनल पूरी तरह नहीं खुलते हैं और ''V'' <sub>m</sub>, E<sub>Na</sub> के नज़दीक नहीं हो जाता.<ref name="rising phase">पूर्वेस ''एट अल.,'' 49-50. पीपी, बुलोक, ओर्कंड और ग्रिनेल, पीपी 140-141., 150-151, श्मिट-नीलसन पीपी. 480-481, 483-484,, पीपी जुंग. 89-90.</ref> ''V'' <sub>''m'' </sub> और सोडियम पारगम्यता में तेज वृद्धि ऐक्शन पोटेंशिअल के ''विकास चरण'' के अनुरूप होती है।<ref name="rising_phase" />
 
इस तीव्र हालत के लिए महत्वपूर्ण थ्रेशहोल्ड वोल्टेज आमतौर पर -45 mV के आसपास होता है, लेकिन यह अक्षतंतु की हाल की गतिविधि पर निर्भर करता है। एक झिल्ली जिसने अभी-अभी एक ऐक्शन पोटेंशिअल फायर किया है वह तुरंत दूसरा फायर नहीं कर सकती, क्योंकि आयन चैनल अपनी सामान्य स्थिति में वापस नहीं आए होते हैं। वह अवधि जिसके दौरान कोई नया ऐक्शन पोटेंशिअल फायर नहीं किया जा सकता है उसे ''एब्सोल्यूट रिफ्रैक्टरी पीरिअड'' कहा जाता है।<ref name="refractory" /> लम्बे समय में, कुछ आयन चैनलों के पुनर्स्थापित हो जाने के बाद, अक्षतंतु को अन्य ऐक्शन पोटेंशिअल उत्पादन के लिए प्रेरित किया जा सकता है, लेकिन केवल एक बहुत मजबूत विध्रुवण के साथ, जैसे, -30 mV. वह अवधि जिसके दौरान ऐक्शन पोटेंशिअल को प्रेरित करना असामान्य रूप से कठिन होता है उसे ''रिलेटिव रेफ्रैक्टरी पीरिअड'' कहा जाता है।<ref name="refractory" />
 
=== चरम और गिरावट चरण ===
पंक्ति 153:
=== दु:साध्य अवधि ===
 
प्रत्येक ऐक्शन पोटेंशिअल के बाद एक दु:साध्य अवधि होती है, जिसे ''एब्सोल्यूट रिफ्रैक्टरी पीरिअड'', जिसके दौरान एक अन्य ऐक्शन पोटेंशिअल को प्रेरित करना असंभव होता है और ''रिलेटिव रेफ्रैक्टरी पीरिअड'', जिसके दौरान एक सामान्य-से-मजबूत प्रेरक की आवश्यकता होती है में विभाजित किया जा सकता है।<ref name="refractory">पूर्वेस ''एट अल.,'' पी 49, बुलोक, ओर्कंड, ग्रिनेल, पी. 151; स्टीवेंस, पीपी 19-20.; जुंग, पीपी. 4-5.</ref> ये दो दु:साध्य अवधियां, सोडियम और पोटेशियम चैनल अणुओं की स्थिति में परिवर्तन के कारण होती हैं। सोडियम चैनल, जब ऐक्शन पोटेंशिअल के बाद बंद होते हैं, तो वे एक "निष्क्रिय" अवस्था में प्रवेश करते हैं, जिसमें उन्हें झिल्ली पोटेंशिअल के होते हुए भी खोला नहीं जा सकता - इससे निरपेक्ष दु:साध्य अवधि का जन्म होता है। सोडियम चैनल की एक पर्याप्त संख्या के अपने विश्राम स्थिति में परिवर्तन के बाद भी, ऐसा अक्सर होता है कि पोटेशियम चैनलों का एक अंश खुला रहता है, जिससे झिल्ली पोटेंशिअल के लिए विध्रुवण मुश्किल होता है और इससे सापेक्ष दु:साध्य अवधि की उत्पत्ति होती है। क्योंकि पोटेशियम चैनलों का घनत्व और उपप्रकार, भिन्न प्रकार के न्यूरॉन्स के बीच भिन्न हो सकता है, सापेक्ष दु:साध्य अवधि उच्च रूप से अस्थिर होती है।
 
निरपेक्ष दु:साध्य अवधि, अक्षतन्तु के इर्द-गिर्द ऐक्शन पोटेंशिअल के दिशाहीन प्रसार के लिए काफी हद तक जिम्मेदार है।<ref name="unidirectional">पूर्वेस ''एट अल.,'' पी 56.</ref> किसी भी समय, सक्रिय रूप छेदित भाग के पीछे अक्षतंतु का पैच दुहसाध्य है, लेकिन सामने का पैच, हाल ही में सक्रिय नहीं किये जाने के कारण ऐक्शन पोटेंशिअल से विध्रुवण से प्रेरित होने में सक्षम है।
पंक्ति 192:
:<math> \tau \frac{\partial V}{\partial t} = \lambda^{2} \frac{\partial^{2} V}{\partial x^{2}} - V </math>
 
जहां ''V(x,t)'', ''t'' समय और ''x'' स्थिति में एक न्यूरॉन की लंबाई के साथ झिल्ली में व्याप्त वोल्टेज है और जहां λ और τ विशेषता लंबाई और समय है जिस पर प्रेरक के लिए प्रतिक्रिया में वोल्टेज क्षय होता है। उपरोक्त सर्किट आरेख के सन्दर्भ में, इन पैमानों को प्रति यूनिट प्रतिरोध और संधारित्र से निर्धारित किया जा सकता है।<ref name="space_time_constants">पूर्वेस ''एट अल.,'' पीपी. 52-53.</ref>
 
:<math> \tau =\ r_{m} c_{m} \, </math>
पंक्ति 217:
{{Main|Neuromuscular junction|Acetylcholine receptor|Cholinesterase enzyme}}
 
रासायनिक सिनेप्स का एक विशेष मामला है तंत्रिकापेशीय जोड़, जिसमें एक मोटर न्यूरोन का अक्षतंतु पेशी फाइबर पर समाप्त होता है।<ref>{{cite journal |author=Hirsch NP |title=Neuromuscular junction in health and disease |journal=Br J Anaesth |volume=99 |issue=1 |pages=132–8 |year=2007 |month=July |pmid=17573397 |doi=10.1093/bja/aem144 |url=http://bja.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=17573397}}</ref> ऐसे मामलों में, जारी तंत्रिकासंचारक एसीटीकोलीन है, जो एसीटी कोलीन रिसेप्टर से आबद्ध होता है, पेशी फाइबर का मेम्ब्रेन में एक अभिन्न मेम्ब्रेन प्रोटीन है (''सरकोलेम्मा'').<ref>{{cite journal |author=Hughes BW, Kusner LL, Kaminski HJ |title=Molecular architecture of the neuromuscular junction |journal=Muscle Nerve |volume=33 |issue=4 |pages=445–61 |year=2006 |month=April |pmid=16228970 |doi=10.1002/mus.20440}}</ref> हालांकि, एसीटीकोलीन बंधा नहीं रहता है बल्कि अलग हो जाता है और सिनेप्स में स्थित इन्जाइम, एसीटीकोलीनस्टेरेज़ द्वारा हाइड्रोलाइज होता है। यह एंजाइम जल्दी से मांसपेशियों की उत्तेजना को कम कर देता है, जो मांसपेशियों में संकुचन के स्तर और समय को नाजुक रूप से विनियमित करने की अनुमति देता है। इस नियंत्रण को रोकने के लिए कुछ ज़हर एसीटीकोलीनस्टेरेज़ को निष्क्रिय कर देते हैं, जैसे नर्व एजेंट सरीन और टबून,<ref name="Newmark">{{cite journal |author=Newmark J |title=Nerve agents |journal=Neurologist |volume=13 |issue=1 |pages=20–32 |year=2007 |pmid=17215724 |doi=10.1097/01.nrl.0000252923.04894.53}}</ref> और कीटनाशक डायज़ीनोन और मेलाथियान.<ref>{{cite journal |author=Costa LG |title=Current issues in organophosphate toxicology |journal=Clin. Chim. Acta |volume=366 |issue=1-2 |pages=1–13 |year=2006 |pmid=16337171 |doi=10.1016/j.cca.2005.10.008}}</ref>
 
== अन्य कोशिका प्रकार ==
पंक्ति 236:
 
=== प्लांट ऐक्शन पोटेंशिअल ===
पौधों और फंगल कोशिकाओं<ref name="Slayman_1976">{{cite journal | author = Slayman CL, Long WS, Gradmann D | year = 1976 | title = Action potentials in ''[[Neurospora crassa]]'', a mycelial fungus | journal = Biochimica et biophysica acta | volume = 426 | pages = 737–744 | pmid = 130926 | doi = 10.1016/0005-2736(76)90138-3 | issue = 4}}</ref> में भी विद्युतीय रूप से उत्तेजना होती है। पशु ऐक्शन पोटेंशिअल का मौलिक अंतर है, कि पौधे की कोशिकाओं में विध्रुवण, धनात्मक सोडियम आयनों से पूरा नहीं होता बल्कि ऋणात्मक ''क्लोराइड'' आयनों द्वारा होता है।<ref name="Mummert_1991">{{cite journal | author = Mummert H, Gradmann D | year = 1991 | title = Action potentials in ''[[Acetabularia]]'': measurement and simulation of voltage-gated fluxes | journal = Journal of Membrane Biology | volume = 124 | pages = 265–273 | pmid = 1664861 | doi = 10.1007/BF01994359 | issue = 3}}</ref><ref name="Gradmann_2001">{{cite journal | author = Gradmann D | year = 2001 | title = Models for oscillations in plants | journal = Austr. J. Plant Physiol. | volume = 28 | pages = 577–590}}</ref><ref name="Beilby_2007">{{cite journal | author = Beilby MJ | year = 2007 | title = Action potentials in charophytes | journal = Int. Rev. Cytol. | volume = 257 | pages = 43–82 | doi = 10.1016/S0074-7696(07)57002-6 | pmid = 17280895}}</ref> ऐक्शन पोटेंशिअल जो पशु और पौधों के ऐक्शन पोटेंशिअल में आम है वह है धनात्मक पोटेशियम आयनों का एक साथ जारी होना, इसलिए नमक की आसमाटिक हानि (केसीआई), जबकि पशु ऐक्शन पोटेंशिअल ओस्मोटिक आधार पर तटस्थ है, जब आवक सोडियम और बाहर जाने वाले पोटेशियम की बराबर राशि एक दूसरे को ओस्मोटिक आधार पर रद्द करती है। पौधों की कोशिकाओं में विद्युतीय और आसमाटिक संबंध<ref name="Gradmann_1998">{{cite journal | author = Gradmann D, Hoffstadt J | year = 1998 | title = Electrocoupling of ion transporters in plants: Interaction with internal ion concentrations | journal = Journal of Membrane Biology | volume = 166 | pages = 51–59 | pmid = 9784585 | doi = 10.1007/s002329900446 | issue = 1}}</ref> आम रूप से एक छोटी उपलब्धि आसमाटिक का संकेत देते हैं, पौधों के एक कोशिकीय पूर्वजों में आम लवणता की स्थिति बदलती है जबकि तीव्र संकेत संचारण की मौजूदा क्रिया को पशुओं के तहत देखा जाता है, एक स्थिर मेटाजोआ पर्यावरण में.<ref name="Gradmann_1980">{{cite book | author = Gradmann D, Mummert H | year = 1980 | chapter = Plant action potentials | title = Plant Membrane Transport: Current Conceptual Issues | editor = Spanswick RM, Lucas WJ, Dainty J | publisher = Elsevier Biomedical Press | location = Amsterdam | pages = 333–344 | isbn = 0444801928}}</ref> यह माना जाना चाहिए कि कोशिकाओं को ग्रहण किया जाना चाहिए, कुछ उदाहरण संवहनी पौधे ''[[छुइमुइ पौधा|मिमोसा पुडिका (छुईमुई)]]'' में ऐक्शन पोटेंशिअल की क्रिया, उत्तेजनीय मेटाजोआ कोशिका से स्वतंत्र रूप से उत्पन्न होती है।
 
== वर्गीकरण वितरण और विकासवादी लाभ ==
पंक्ति 327:
20वीं सदी, इलेक्ट्रोफिजियोलॉजी के लिए एक स्वर्ण युग थी। 1902 में और फिर 1912 में, जूलियस बर्नस्टेन ने परिकल्पना को विकसित किया कि ऐक्शन पोटेंशिअल, आयनों के लिए अक्षतंतु की पारगम्यता के परिवर्तन के चलते फलित होता है।<ref name="bernstein_1902_1912">{{cite journal | author = [[Julius Bernstein|Bernstein J]] | year = 1902 | title = Untersuchungen zur Thermodynamik der bioelektrischen Ströme | journal = Pflüger's Arch. Ges. Physiol. | volume = 92 | pages = 521–562 | doi = 10.1007/BF01790181}}<br />* {{cite book | author = [[Julius Bernstein|Bernstein J]] | year = 1912 | title = Elektrobiologie | publisher = Vieweg und Sohn | location = Braunschweig}}</ref> बर्नस्टेन की परिकल्पना की पुष्टि केन कोल और हावर्ड कर्टिस द्वारा की गई जिन्होंने दिखाया कि एक ऐक्शन पोटेंशिअल के दौरान झिल्ली प्रवाहकत्त्व बढ़ जाती है।<ref>{{cite journal | author = [[Kenneth Stewart Cole|Cole KS]], Curtis HJ | year = 1939 | title = Electrical impedance of the squid giant axon during activity | journal = J. Gen. Physiol. | volume = 22 | pages = 649–670 | doi = 10.1085/jgp.22.5.649 | pmid = 19873125 | issue = 5 | pmc = 2142006}}</ref> 1907 में, लुई लापिकु ने सुझाव दिया कि ऐक्शन पोटेंशिअल जिसे एक सीमा के रूप में उत्पन्न किया गया था वह क्रॉस था<ref>{{cite journal | author = [[Lapicque L]] | year = 1907 | title = Recherches quantitatives sur l’excitationelectrique des nerfs traitee comme une polarisation | journal = J. Physiol. Pathol. Gen | volume = 9| pages = 620– 635}}</ref>, जिसे बाद में आयनिक चालन के डाइनेमिक प्रणाली के एक उत्पाद के रूप में दिखाया गया। 1949 में, एलन होज्किन और बर्नार्ड काट्ज़ ने बर्नस्टेन की परिकल्पना को आगे सुधारा और यह माना कि भिन्न आयन में अक्षीय झिल्ली में भिन्न पारगम्यता होती है; विशेष रूप से उन्होंने ऐक्शन पोटेंशिअल में सोडियम पारगम्यता के महत्व का प्रदर्शन किया।<ref name="hodgkin_1949">{{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[Bernard Katz|Katz B]] | year = 1949 | title = The effect of sodium ions on the electrical activity of the giant axon of the squid | journal = J. Physiology | volume = 108 | pages = 37–77}}</ref> यह अनुसंधान होज्किन, काट्ज़ और एंड्रयू हक्सले के 1952 के पांच प्रपत्रों में फलित हुआ, जिसमें उन्होंने वोल्टेज क्लैम्प तकनीक का उपयोग किया और पोटेशियम और सोडियम के लिए अक्षीय मेम्ब्रेन की पारगम्यता को दर्शाया, जहां से उन्होंने ऐक्शन पोटेंशिअल को मात्रात्मक रूप से फिर से संगठित किया।<ref name="hodgkin_1952">{{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[Andrew Huxley|Huxley AF]], [[Bernard Katz|Katz B]] |title = Measurements of current-voltage relations in the membrane of the giant axon of ''Loligo'' | journal = Journal of Physiology | year = 1952 | volume = 116 | pages = 424–448 | pmid = 14946713 | issue = 4 | pmc = 1392213}}<br />* {{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[Andrew Huxley|Huxley AF]] |title = Currents carried by sodium and potassium ions through the membrane of the giant axon of ''Loligo''|journal=Journal of Physiology | year = 1952 | volume = 116 | pages = 449–472 | pmid = 14946713 | issue = 4 | pmc = 1392213}}<br />* {{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[Andrew Huxley|Huxley AF]] | title = The components of membrane conductance in the giant axon of ''Loligo'' | journal = J Physiol | year = 1952 | volume = 116 | pages= 473–496 | pmid = 14946714 | issue = 4 | pmc = 1392209}}<br />* {{cite journal | author=[[Alan Lloyd Hodgkin|Hodgkin AL]], [[Andrew Huxley|Huxley AF]] | title = The dual effect of membrane potential on sodium conductance in the giant axon of ''Loligo'' | journal = J Physiol | year = 1952 | volume = 116 | pages = 497–506 | pmid = 14946715 | issue=4 | pmc=1392212}}<br />* {{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[Andrew Huxley|Huxley AF]] | title = A quantitative description of membrane current and its application to conduction and excitation in nerve | journal = J Physiol | year = 1952 | volume = 117 | pages = 500–544 | pmid = 12991237 | issue = 4 | pmc = 1392413}}</ref> होज्किन और हक्सले ने अपने गणितीय मॉडल के गुणों को असतत आयन चैनल के साथ सहसंबद्ध किया जो कई स्थितियों में मौजूद रहता था, जिसमें शामिल था "खुला", "बंद" और "निष्क्रिय". उनकी परिकल्पनाओं की पुष्टि 1970 के दशक के मध्य और 1980 के दशक में इरविन नेहर और बर्ट साक्मन ने की, जिन्होंने पैच क्लेम्पिंग तकनीक का विकास व्यक्तिगत एकल प्रवाह चैनलों की जांच के लिए किया।<ref name="patch_clamp">{{cite journal | author = [[Erwin Neher|Neher E]], [[Bert Sakmann|Sakmann B]] | year = 1976 | title = Single-channel currents recorded from membrane of denervated frog muscle fibres | journal = Nature | volume = 260 | pages = 779–802}}<br />* {{cite journal | author = Hamill OP, Marty A, [[Erwin Neher|Neher E]], [[Bert Sakmann|Sakmann B]], Sigworth FJ | year = 1981 | title = Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches | journal = Pflugers Arch. | volume = 391 | pages = 85–100 | doi = 10.1007/BF00656997 | pmid = 6270629 | issue = 2}}<br />* {{cite journal | doi = 10.1038/scientificamerican0392-44 | author = [[Erwin Neher|Neher E]], [[Bert Sakmann|Sakmann B]] | year = 1992 | title = The patch clamp technique | journal = Scientific American | volume = 266 | pages = 44–51 | pmid = 1374932 | issue = 3}}</ref> 21वीं सदी में, शोधकर्ताओं ने प्रवाह की इन स्थितियों के संरचनात्मक आधार के लिए खोज शुरू की, आयन प्रजातियों के लिए उनकी चयनात्मकता,<ref name="yellen_2002">{{cite journal | author = Yellen G | year = 2002 | title = The voltage-gated potassium channels and their relatives | journal = Nature | volume = 419 | pages = 35–42 | doi = 10.1038/nature00978 | pmid = 12214225 | issue = 6902}}</ref> एटम-रिजोल्यूशन क्रिस्टल संरचना<ref name="doyle_1998">{{cite journal | author = Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, ''et al.'' | year = 1998 | title = The structure of the potassium channel, molecular basis of K<sup>+</sup> conduction and selectivity | journal = Science | volume = 280 | pages = 69–77 | doi = 10.1126/science.280.5360.69 | pmid = 9525859 | issue = 5360}}<br />* {{cite journal | author = Zhou Y, Morias-Cabrak JH, Kaufman A, MacKinnon R | year = 2001 | title = Chemistry of ion coordination and hydration revealed by a K<sup>+</sup>-Fab complex at 2.0 A resolution | journal = Nature | volume = 414 | pages = 43–48 | doi = 10.1038/35102009 | pmid = 11689936 | issue = 6859}}<br />* {{cite journal | author = Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R | year = 2003 | title = X-ray structure of a voltage-dependent K<sup>+</sup> channel | journal = Nature | volume = 423 | pages = 33–41 | doi = 10.1038/nature01580 | pmid = 12721618 | issue = 6935}}</ref> के माध्यम से प्रतिदीप्ति दूरी मापन<ref name="FRET">{{cite journal | author = Cha A, Snyder GE, Selvin PR, Bezanilla F | year = 1999 | title = Atomic-scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy | journal = Nature | volume = 402 | pages = 809–813 | doi = 10.1038/45552 | pmid = 10617201 | issue = 6763}}<br />* {{cite journal | author = Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff E | year = 1999 | title = Spectroscopic mapping of voltage sensor movement in the ''Shaker'' potassium channel | journal = Nature | volume = 402 | pages = 813–817 | doi = 10.1038/45561 | pmid = 10617202 | issue = 6763}}<br />* {{cite journal | author = Bezanilla F | year = 2000 | title = The voltage sensor in voltage-dependent ion channels | journal = Physiol. Rev. | volume = 80 | pages = 555–592 | pmid = 10747201 | issue = 2}}</ref> और क्रायो-इलेक्ट्रॉन माइक्रोस्कोपी अध्ययन करता है।<ref name="cryoEM">{{cite journal | author = Catterall WA | year = 2001 | title = A 3D view of sodium channels | journal = Nature | volume = 409 | pages = 988–999 | doi = 10.1038/35059188 | pmid = 11234048 | issue = 6823}}<br />* {{cite journal | author = Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, ''et al.'' | year = 2001 | title = The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities | journal = Nature | volume = 409 | pages = 1047–1051 | doi = 10.1038/35059098 | pmid = 11234014 | issue = 6823}}</ref>
 
जूलियस बर्नस्टेन ने ही पहली बार रेस्टिंग पोटेंशिअल के लिए नार्न्स्त समीकरण पेश किया था, यह 1943 में डेविड ई गोल्डमन द्वारा गोल्डमन समीकरण के रूप में सामान्यीकृत किया गया।<ref name="goldman_1943">{{cite journal | author = Goldman DE | year = 1943 | title = Potential, impedance and rectification in membranes | journal = J. Gen. Physiol. | volume = 27 | pages = 37–60 | doi = 10.1085/jgp.27.1.37 | pmid = 19873371 | issue = 1 | pmc = 2142582}}</ref> सोडियम पोटेशियम-पंप 1957 में पहचाना गया<ref>{{cite journal | author = Skou J | title = The influence of some cations on an adenosine triphosphatase from peripheral nerves | journal = Biochim Biophys Acta | volume = 23 | issue = 2 | pages = 394–401 | year = 1957 | pmid = 13412736 | doi = 10.1016/0006-3002(57)90343-8}}, {{cite press release | url = http://nobelprize.org/nobel_prizes/medicine/laureates/1997/press.html | title = The Nobel Prize in Chemistry 1997 | publisher = The Royal Swedish Academy of Science | year = 1997 | accessdate = 2010-02-21 }}</ref> और उसके गुण को धीरे-धीरे विस्तारित किया गया,<ref name="hodgkin_1955" /><ref name="caldwell_1960" /><ref name="caldwell_1957">{{cite journal | author = Caldwell PC, Keynes RD | year = 1957 | title = The utilization of phosphate bond energy for sodium extrusion from giant axons | journal = J. Physiol. (London) | volume = 137 | pages = 12–13P}}</ref> जो एक्स-रे क्रिस्टलोग्राफी द्वारा परमाणु संकल्प संरचना के निर्धारण में फलित हुआ।<ref name="Na_K_pump_structure">{{cite journal | author = Morth JP, Pedersen PB, Toustrup-Jensen MS, Soerensen TLM, Petersen J, Andersen JP, Vilsen B, Nissen P | year = 2007 | title = Crystal structure of the sodium–potassium pump | journal = Nature | volume = 450 | pages = 1043–1049 | doi = 10.1038/nature06419 | pmid = 18075585 | issue = 7172}}</ref> संबंधित आयनिक पंपों के क्रिस्टल संरचनाओं का हल भी कर दिया गया, एक व्यापक विवरण देते हुए कि ये आणविक मशीनें कैसे काम करती हैं।<ref>{{cite journal | author = Lee AG, East JM | year = 2001 | title = What the structure of a calcium pump tells us about its mechanism | journal = Biochemical Journal | volume = 356 | pages = 665–683|pmid= 11389676 | doi = 10.1042/0264-6021:3560665 | issue = Pt 3 | pmc = 1221895}}</ref>
 
== मात्रात्मक मॉडल ==