264
सम्पादन
Thinkmaths (चर्चा | योगदान) |
Thinkmaths (चर्चा | योगदान) |
||
<math> \frac{1}{2} \frac {m^2 (v_x^2 + v_y^2 + v_z^2)}{m} = \frac{1}{2} \frac{(p_x^2 + p_y^2 + p_z^2)}{m} \qquad (2)</math>
जहाँ <math> p_x, p_y, p_z </math> गति वेक्टर के, तीन आयाम कार्तीय निर्देशांक के अनुसार, घटक हैं | क्वांटम यांत्रिकी में <math> -i \hbar \vec \nabla </math> गति ऑपरेटर है |
इस ऑपरेटर का मूल आंशिक अंतर कलन में है | अगर यह ऑपरेटर एक खास श्रेनी के फंक्शन, जिसे आईगेनफंक्शन कहते है, पर कार्य करता है तो इस कार्य का परिणाम वही फंक्शन एक निरंतर अंक से गुणित, जिसे आईगेनवेल्यू कहते है, होता है | आईगेनफंक्शन ऑपरेटर निर्भर होता है | यह आईगेनवेल्यू इस ऑपरेटर के मामले में कण की गती बताती है | क्वांटम यांत्रिकी में कई ऑपरेटर होते है, यह ऑपरेटर वही चर होते है जो एक कण के लिए प्रयोगों द्वारा मापें जा सकते हैं | इन चरों को 'अवलोकनयोगी' (observables) कहते हैं | गती, रफतार, स्थान अौर ऊर्जा अवलोकनयोगी चरें हैं |
एक आयाम में गती ऑपरेटर का समिकरण <math> -i \hbar \frac {\partial}{\partial x} </math> होता है |
== सन्दर्भ ==
|
सम्पादन