"श्रोडिंगर समीकरण" के अवतरणों में अंतर

107 बैट्स् नीकाले गए ,  6 वर्ष पहले
जब लुई डी ब्राॅय ने अपने डी ब्राॅय समिकरण से कण - लहर द्वंद्व के सिद्ध कर दिया, तो वैज्ञानिकों को इस प्रभाव को समझाने के लिए एक नई यांत्रिकी की ज़रुरत थी | यही पर श्रोडिंगर ने लहर यांत्रिकी से प्रेरणा लेकर एक समिकरण का निर्माण किया जो कण - लहर द्वंद्व के कारण दिखाए देने वाले क्वांटम प्रभावों को समझा और समझाया जा सके | श्रोडिंगर ने फिर इसे एक न्यूटोनियन कण पर इस्तमाल कर अपने समिकरण को इस दुनिया से जोड़ा |
 
कल्पना कीजिए की एक कण जो स्वतंत्र रुप से अंतरिक्ष में घूम रहा है | क्योंकि इस कण पर कोई भी बाहरी बल नहीं है, इसलिए इस कण के पास शायद गतिज ऊर्जा (kinetic energy) है और शायद किसी बाहरी बल के कारण संभावित ऊर्जा (potential energy) भी है | तो किसी भी न्यूटोनियन कण के लिए संपूर्ण यांत्रिक ऊर्जा का समिकरण <math>E = \frac{1}{2} m \vec v.\vec v + U </math> होता है जहाँ <math> \vec v </math> तीन आयाम कार्तीय निर्देशांक के अनुसार वेग वेक्टर है अौर <math> U </math> कण की संभावित ऊर्जा है | अगर <math> v_x, v_y, v_z </math> इस वेग वेक्टर के घटकों को माना जाए तो गतिज ऊर्जा का समिकरण को
 
<math>E = \frac{1}{2} m \vec v.\vec v + U= \frac{1}{2} m (v_x^2 + v_y^2 + v_z^2) + U\qquad (1)</math>
264

सम्पादन