"समूह (गणितशास्त्र)": अवतरणों में अंतर

491 बैट्स् जोड़े गए ,  7 वर्ष पहले
भूमिका में अल्प सुधार
छो ({{सुधालेख}} जोड़ा।)
(भूमिका में अल्प सुधार)
{{सुधालेख}}
[[चित्र:Rubik's cube.svg|thumbnail|right|[[रुबिक घन समूह]] से [[रुबिक घन]] प्रहस्तन।]]
 
[[गणित]] में '''समूह''' कुछ [[अवयव (गणित)|अवयवों]] वाले उस [[समुच्चय (गणित)|समुच्चय]] को कहते हैं जिसमें कोई [[द्विचर संक्रिया]] इस तरह से परिभाषित हो जो इसके किन्हीं दो अवयवों के संयुग्म से हमें तीसरा अवयव दे और वह तीसरा अवयव चार प्रतिबंधों को संतुष्ट करे। इन प्रतिबंधों को [[अभिगृहीत]] कहा जाता है जो निम्न हैं: [[संवरक (गणित)|संवरक]], [[साहचर्य गुणधर्म|साहचर्यता]], [[तत्समक अवयव|तत्समकता]] और व्युत्क्रमणीयता। समूह का सबसे प्रचलित उदाहरण [[जोड़]] द्विचर संक्रिया के साथ [[पूर्णांक|पूर्णांकों]] का समुच्चय है; किन्हीं दो पूर्णांकों को जोड़ने पर भी एक पूर्णांक प्राप्त होता है। समूह अभिगृहीतों का अमूर्त सूत्रिकरण, किसी विशिष्ट समूह अथवा इसकी संक्रिया के मूर्त प्राकृतिक रूप का पृथकरण है। इस प्रकार [[अमूर्त बीजगणित]] और इससे परे यह व्यापक गणितीय महत्त्व रखता है।
{{सुधालेख}}[[गणित|गणितशास्त्र]] में '''समूह''' एक [[बीजगणित|बीजगणितीय]] संरचना है, जिसमें एक अंतर्निहित [[समुच्चय सिद्धान्त|समुच्चय]] व उसपर कार्य करने वाली एक द्विआधारी संक्रिया होते हैं, जो कि समुच्चय के किन्हीं दो अवयवों को जोडने पर एक तीसरा अवयव देती है। एक समूह कहलाने के लिए किसी समुच्चय और संक्रिया पर चार प्रतिबंध होते हैं जिन्हें समूह [[अभिगृहीत]] कहते हैं। यह इस प्रकार हैं - संवृति, सहचारिता, तत्समक एवं व्युत्क्रमणीयता। कई सुपरिचित गणितीय [[संरचना|संरचनाएँ]] इन अभिगृहीतों का पालन करती हैं, उदाहरणार्थ [[पूर्णांक]] योगफल करने की संक्रिया के तहत एक समूह बनाते हैं।
 
{{समूह सिद्धांत}}
{{बीजगणितिय संरचना}}