"श्रोडिंगर समीकरण" के अवतरणों में अंतर

छो
बॉट: वर्तनी एकरूपता।
(काम जारी साँचा हटाया)
छो (बॉट: वर्तनी एकरूपता।)
जब लुई डी ब्राॅय ने अपने डी ब्राॅय समिकरण से कण - लहर द्वंद्व के सिद्ध कर दिया, तो वैज्ञानिकों को इस प्रभाव को समझाने के लिए एक नई यांत्रिकी की ज़रुरत थी | यही पर श्रोडिंगर ने लहर यांत्रिकी से प्रेरणा लेकर एक समिकरण का निर्माण किया जो कण - लहर द्वंद्व के कारण दिखाए देने वाले क्वांटम प्रभावों को समझा और समझाया जा सके | श्रोडिंगर ने फिर इसे एक न्यूटोनियन कण पर इस्तमाल कर अपने समिकरण को इस दुनिया से जोड़ा |
 
कल्पना कीजिए की एक कण जो स्वतंत्र रुपरूप से अंतरिक्ष में घूम रहा है | इस कण के पास शायद गतिज ऊर्जा (kinetic energy) है और शायद किसी बाहरी बल के कारण संभावित ऊर्जा (potential energy) भी है | तो किसी भी न्यूटोनियन कण के लिए संपूर्ण यांत्रिक ऊर्जा का समिकरण <math>E = \frac{1}{2} m \vec v.\vec v + U </math> होता है जहाँ <math> \vec v </math> तीन आयाम कार्तीय निर्देशांक के अनुसार वेग वेक्टर है अौर <math> U </math> कण की संभावित ऊर्जा है | अाप <math> U </math> के जगह <math> V </math> का भी इस्तमाल कर सकते हैं | अगर <math> v_x, v_y, v_z </math> इस वेग वेक्टर के घटकों को माना जाए तो गतिज ऊर्जा का समिकरण को
 
<math>E = \frac{1}{2} m \vec v.\vec v + U= \frac{1}{2} m (v_x^2 + v_y^2 + v_z^2) + U\qquad (1)</math>
* <math> \Psi </math> को दो बार डिफ़्रेंशिएबल (differentiable) होना चाहिए, क्योंकि श्रोडिंगर समीकरण दुसरी क्रम का अंतर समीकरण (differential equation) है |
 
*<math> \int^\infty_{-\infty} \Psi \Psi^* d \tau = 1 </math> इसे 'नार्मलाज़ेशन शर्त' (normalization condition) कहते हैं | मैक्स बार्ण, जो एक विश्वविख्यात भूगोल शास्तरी थे, उन्होंनें व्याख्या कर कहा की <math> \Psi \Psi^* = |\Psi|^2 </math> को प्रायिकता घनत्व फंक्शन (probability density function) के तरह माना जा सकता है, जिसे अंतरिक्ष के कुछ हिस्से पर एकीकरण (integration) करने पर हमें अंतरिक्ष के उस हिस्से में उस कण को सफल रुपरूप से खोज निकालने की प्रायिकता पता चलती है | इस व्याख्या को 'बार्ण व्याख्या' (Born interpretation) कहते है | क्योंकि समपूर्ण अंतरिक्ष में वह कण कहीं पर भी हो सकता है, इसलिए समपूर्ण अंतरिक्ष में उस कण को सफल रुपरूप से खोज निकालने की प्रायिकता १ होती है, इसी को नार्मलाज़ेशन शर्त कहते है |
 
== सन्दर्भ ==
{{reflist}}
== बाहरी लिंककड़ियाँ ==
* [http://www.lightandmatter.com/html_books/0sn/ch13/ch13.html Quantum Physics] - textbook with a treatment of the time-independent Schrödinger equation
* [http://eqworld.ipmnet.ru/en/solutions/lpde/lpde108.pdf Linear Schrödinger Equation] at EqWorld: The World of Mathematical Equations.