"कार्बन नैनोट्यूब": अवतरणों में अंतर

छो बॉट: वर्तनी एकरूपता।
छो बॉट: वर्तनी एकरूपता।
पंक्ति 61:
! [[यंग का मापांक]] (TPa)
! [[तनन-सामर्थ्य]] (GPa)
! (%) टूटते समय खिंचाव
|-
| SWNT
| ~1 (from 1 to 5)
| 13–53<sup>E</sup>
| 16
|-
| आर्मचेयर SWNT
| 0.94 <sup>T</sup>
| 126.2 <sup>T</sup>
| 23.1
|-
| ज़िगज़ैग SWNT
| 0.94 <sup>T</sup>
| 94.5 <sup>T</sup>
| 15.6-17.5
|-
| काइरल SWNT
| 0.92
|
|
|-
| MWNT
| 0.8-0.9 <sup>E</sup>
| 11-150 <sup>E</sup>
|
|-
| [[स्टेनलेस स्टील]]
| ~0.2
| ~ 0.65-3
| 15-50
|-
| [[केवलर]]
| ~0.15
| ~3.5
| ~ 2
|-
| केवलर <sup>T</sup>
| 0.25
| 29.6
|
|}
पंक्ति 106:
<sup>E</sup> प्रायोगिक अवलोकन; <sup>T</sup> सैद्धांतिक भविष्यवाणी
 
उपर्युक्त चर्चा नैनोट्यूब के अक्षीय गुणों को सन्दर्भित करती है, जबकि सरल ज्यामितीय विमर्श सुझाते हैं कि कार्बन नैनोट्यूब, ट्यूब धुरी के साथ की बजाय रेडियल दिशा में अधिक नरम होने चाहिए। यकीनन, रेडियल लोच के [[TEM]] अवलोकन ने यह सुझाया कि वान डेर वाल्स बल, दो समीपवर्ती नैनोट्यूब को ख़राब कर सकते हैं।<ref>आर. एस. रुओफ़, एट अल. "रैडिअल डीफोरमेशन ऑफ़ कार्बन नैनोट्यूब बाई वां डेर वाल्स फोर्सेस" [http://www.nature.com/nature/journal/v364/n6437/abs/364514a0.html Nature 364, 514 (1993)]</ref> बहु-दीवार कार्बन नैनोट्यूब पर कई संगठनों द्वारा किए गए नैनो अभिस्थापन प्रयोग ने<ref>Palaci, एट अल. "रेडियल इलास्टिसिटी ऑफ़ मल्टीवॉल्ड कार्बन नैनोट्यूब". [http://link.aps.org/doi/10.1103/PhysRevLett.94.175502 Phys.][http://link.aps.org/doi/10.1103/PhysRevLett.94.175502 Rev. Lett. ][http://link.aps.org/doi/10.1103/PhysRevLett.94.175502 94, 175502 (2005)]</ref><ref>M.-F. Yu, एट अल. "इन्वेस्टीगेशन ऑफ़ रैडिअल ऑफ़ इंडिविजुअल कार्बन नैनोट्यूब अंडर कंट्रोल्ड इंडेंटेशन फ़ोर्स". [http://link.aps.org/doi/10.1103/PhysRevLett.85.1456 Phys.][http://link.aps.org/doi/10.1103/PhysRevLett.85.1456 Rev. Lett. ][http://link.aps.org/doi/10.1103/PhysRevLett.85.1456 85, 1456-1459 (2000)]</ref> यंग के मापांक का संकेत दिया कि कई GPa के क्रम का यह पुष्टि करना कि CNTs वास्तव में रेडियल दिशा में नरम होते हैं।
 
=== कठोरता ===
[[हीरे]] को सबसे कठोर पदार्थ माना जाता है और यह अच्छी तरह से ज्ञात है कि ग्रेफाइट उच्च तापमान और उच्च दबाव की परिस्थितियों में हीरे में परिवर्तित हो जाता है। SWNTs को ''घरेलु तापमान'' पर 24 GPa से ऊपर का दबाव देते हुए एक अत्यंत कठोर पदार्थ के संश्लेषण में, एक अध्ययन सफल रहा। इस पदार्थ की कठोरता को एक [[नैनोअभिस्थापक]] से 62-152 GPa मापी गई। सन्दर्भ हीरे और [[बोरान नाइट्राइड]] नमूनों की कठोरता क्रमशः 150 और 62 GPa थी। संपीड़ित SWNTs का [[थोक मापांक]] 462-546 GPa था, जिसने हीरे के 420 GPa के मूल्य को पीछे कर दिया। <ref>
{{cite journal |author=M. Popov ''et al.''|title=Superhard phase composed of single-wall carbon nanotubes|journal=[[Phys. Rev. B]]|volume=65|pages=033408|year=2002|doi=10.1103/PhysRevB.65.033408|url=http://www.ssl.physics.ncsu.edu/publication/browse/getFileAction?fileref=2003-02-27+12:53:01&dbfilename=2002-PRB65-033408.pdf|format=free download PDF
}}</ref>
पंक्ति 154:
क्रिस्टलीयग्राफिक दोष, ट्यूब के विद्युत गुण को भी प्रभावित करते हैं। एक आम परिणाम है - ट्यूब की दोषपूर्ण क्षेत्र के माध्यम से न्यून चालकता. आर्मचेयर-प्रकार के ट्यूब में एक दोष (जो बिजली के चालाक हैं) आसपास के क्षेत्र को अर्ध-परिचालक बना सकते हैं और एकल मोनोएटोमिक रिक्तियां चुंबकीय गुण को प्रेरित करती हैं।<ref>कार्बन आधारित चुंबकत्व: धातु मुक्त कार्बन आधारित यौगिक और पदार्थ के चुंबकत्व का अवलोकन, तातियाना मकारोवा और फर्नांडो पालकियो द्वारा संपादित (Elsevier 2006)</ref>
 
क्रिस्टलीयग्राफिक दोष, ट्यूब के तापीय गुणों को अत्यधिक प्रभावित करते हैं। इस तरह के दोष, [[फोनन]] प्रकीर्णन को प्रेरित करते हैं, जो बदले में फोनन की विश्रांति दर को बढ़ाता है। यह [[मीन फ्री पाथ]] को कम कर देता है और नैनोट्यूब संरचनाओं की तापीय चालकता को कम कर देता है। फोनन ट्रांसपोर्ट सिमुलेशन से संकेत मिलता है कि स्थानापन्न सम्बन्धी दोष जैसे की नाइट्रोजन या बोरान, उच्च फ्रीक्वेंसी ऑप्टिकल फोनन के प्रकीर्णन को मुख्य रूप से प्रेरित करेंगे। हालांकि, बड़े पैमाने दोष जैसे [[स्टोन वेल्स दोष]], विस्तृत श्रृंखला की आवृत्तियों पर फोनन प्रकीर्णन को प्रेरित करता है जिसके परिणामस्वरूप तापीय चालकता में काफी कमी हो जाती है।<ref>{{Cite journal|first=N.|last=Mingo|year=2008|title=Phonon transmission through defects in carbon nanotubes from first principles|journal=Physical Review B|volume=77|page=033418|doi=10.1103/PhysRevB.77.033418|last2=Stewart|first2=D. A.|last3=Broido|first3=D. A.|last4=Srivastava|first4=D.}}</ref>
 
=== एक आयामी परिवहन ===
पंक्ति 197:
|volume=130|pages=9918–9924|year=2008|pmid=18597459|last2=Ago|first2=H|last3=Imamoto|first3=K|last4=Tsuji|first4=M|last5=Iakoubovskii|first5=K|last6=Minami|first6=N|issue=30}}</ref> इन धातु नैनोकणों को अन्य तरीकों द्वारा भी उत्पादित किया जा सकता है, जैसे आक्साइड की कटौती या आक्साइड के ठोस घोल से. नैनोट्यूब के व्यास, जिन्हें बढ़ाना है वे धातु कणों के आकार से संबंधित होते हैं। इसे धातु के व्यवस्थित (या मुखौटा युक्त) जमाव, ताप देकर, या किसी धातु की परत के प्लाज्मा निक्षारण द्वारा नियंत्रित किया जा सकता है। सबस्ट्रेट को लगभग 700 डिग्री सेल्सियस तक गरम किया जाता है। नैनोट्यूब के विकास को आरंभ करने के लिए, रिएक्टर में दो गैसों को बहाया जाता है: एक प्रक्रिया गैस (जैसे [[अमोनिया]], [[नाइट्रोजन]] या [[हाइड्रोजन]]) और एक कार्बन-युक्त गैस (जैसे [[एसिटिलीन]], [[ईथीलीन]], [[इथेनॉल]] या [[मीथेन]]). नैनोट्यूब, धातु उत्प्रेरक के स्थलों पर बढ़ते हैं; कार्बन युक्त गैस को उत्प्रेरक कण की सतह पर तोड़ा जाता है और कार्बन, कण के छोर पर चला जाता है जहां यह नैनोट्यूब का निर्माण करता है। इस क्रियाविधि का अभी भी अध्ययन किया जा रहा है। उत्प्रेरक कण, विकास प्रक्रिया के दौरान, उत्प्रेरक कण और सबस्ट्रेट के बीच आसंजन के आधार पर, बढ़ते नैनोट्यूब के मुहाने पर या नैनोट्यूब के तल पर बने रह सकते हैं।
 
कार्बन नैनोट्यूब के वाणिज्यिक उत्पादन के लिए CVD एक आम तरीका है। इस प्रयोजन के लिए, धातु नैनोकणों को एक उत्प्रेरक सहायक के साथ मिश्रित किया जाता है जैसे MgO या Al<sub>2</sub>O<sub>3</sub> ताकि धातु के कणों के साथ कार्बन फीडस्टॉक की उत्प्रेरक प्रतिक्रिया की अधिक उपज के लिए सतही क्षेत्र में वृद्धि की जा सके। इस संश्लेषण मार्ग में एक मुद्दा, एसिड प्रयोग, जो कभी-कभी कार्बन नैनोट्यूब के मूल ढांचे को नष्ट कर सकता है, के द्वारा उत्प्रेरक समर्थन को हटाना है। हालांकि, वैकल्पिक उत्प्रेरक समर्थन जो पानी में घुलनशील हैं, नैनोट्यूब विकास के लिए प्रभावी सिद्ध हुए हैं।<ref>{{Cite journal|first=A.|last=Eftekhari|title=High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition|doi=10.1016/j.carbon.2005.12.006|journal=Carbon|volume=44|page=1343|year=2006|last2=Jafarkhani|first2=P|last3=Moztarzadeh|first3=F}}</ref>
 
विकास प्रक्रिया (प्लाज्मा वर्धित रासायनिक वाष्प जमाव*) के दौरान यदि एक [[प्लाज्मा]], एक तीव्र विद्युत् क्षेत्र के अनुप्रयोग द्वारा उत्पन्न होता है, तो नैनोट्यूब विकास, विद्युत क्षेत्र की दिशा का अनुगमन करेगा। <ref>{{Cite journal|first=Z. F.|last=Ren|title=Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass|journal=Science|volume=282|page=1105|year=1998|doi=10.1126/science.282.5391.1105|pmid=9804545|last2=Huang|first2=ZP|last3=Xu|first3=JW|last4=Wang|first4=JH|last5=Bush|first5=P|last6=Siegal|first6=MP|last7=Provencio|first7=PN|issue=5391}}</ref> रिएक्टर के ज्यामिति को समायोजित करके, खड़े संरेखित कार्बन नैनोट्यूब को संश्लेषित करना संभव है<ref>[http://www.nano-lab.com/imagegallery.html SEM images &amp; TEM images of carbon nanotubes, aligned carbon nanotube arrays, and nanoparticles]</ref> (यानी, सबस्ट्रेट के लम्बवत), एक आकृति विज्ञान जो नैनोट्यूब से इलेक्ट्रॉन उत्सर्जन में रुचि रखने वाले शोधकर्ताओं की रूचि का केंद्र रहा है। प्लाज्मा के बिना, परिणामस्वरूप प्राप्त नैनोट्यूब अक्सर अनियमित उन्मुख होते हैं। प्रतिक्रिया की कुछ स्थितियों के तहत, यहां तक कि एक प्लाज्मा के अभाव में, नजदीकी अंतराल में रखे नैनोट्यूब, एक ऊर्ध्वाधर वृद्धि बनाए रखते हैं जो एक जंगल के कालीन से मिलते-जुलते ट्यूबों के एक घने विन्यास में परिणत होता है।
पंक्ति 237:
|pages=
|year=
|doi= |unused_data=|before publication
}}</ref> HiPco नमूनों के 400-1,000 m<sup>2</sup>/g के मूल्य से अधिक. संश्लेषण कुशलता, [[लेज़र पृथक्करण]] पद्धति से करीब 100 गुना अधिक है। इस विधि से 2.5&nbsp;mm ऊंचाई के SWNT फ़ॉरेस्ट बनाने के लिए आवश्यक समय 2004 में 10 मिनट था। उन SWNT फ़ॉरेस्ट को आसानी से उत्प्रेरक से अलग किया जा सकता है, आगे और शुद्धि के बिना साफ SWNT सामग्री उत्पादित की जा सकती है (शुद्धता> 99.98%). तुलना के लिए, जैसा कि विकसित HiPco CNTs में 5-35%<ref>{{Cite web|title=Unidym product sheet SWNT|url=http://www.unidym.com/files/Unidym_Product_Sheet_SWNT.pdf |format=free download PDF}}</ref> धातु अशुद्धता शामिल होती है; इसलिए इसका शुद्धिकरण फैलाव और सेंट्रीफ्युगेशन के माध्यम से होता है जो नैनोट्यूब को नुकसान पहुंचाता है। सुपर-विकास प्रक्रिया इस समस्या से बचने की अनुमति देती है। पैटर्न युक्त उच्च आयोजित एकल-दीवार नैनोट्यूब की संरचनाओं को सुपर-विकास तकनीक का उपयोग कर सफलतापूर्वक गढ़ा गया।
 
पंक्ति 294:
पहला नैनोट्यूब इंटिग्रेटेड मेमोरी सर्किट 2004 में बनाया गया था। नैनोट्यूब की चालकता का विनियमन प्रमुख चुनौतियों में से एक रहा है। सतह के सूक्ष्म लक्षणों के आधार पर एक नैनोट्यूब एक सादे [[परिचालक]] के रूप में या एक अर्धपरिचालक के रूप में कार्य कर सकता है। गैर अर्धपरिचालक ट्यूब को हटाने के लिए एक पूर्ण स्वचालित विधि विकसित की गई है।<ref>{{Cite journal|first=Yu-Chih|last=Tseng|title=Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology|journal=Nano Letters|volume=4|year=2004|pages=123–127|doi=10.1021/nl0349707|last2=Xuan|first2=Peiqi|last3=Javey|first3=Ali|last4=Malloy|first4=Ryan|last5=Wang|first5=Qian|last6=Bokor|first6=Jeffrey|last7=Dai|first7=Hongjie}}</ref>
 
कार्बन नैनोट्यूब ट्रांजिस्टर बनाने का एक और तरीका है उनके यादृच्छिक नेटवर्क का इस्तेमाल करना। ऐसा करके एक व्यक्ति उनकी सारी विद्युत् भिन्नताओं का औसतिकरण करता है और वह वेफर स्तर पर बड़े पैमाने में उपकरणों का उत्पादन कर सकता है।<ref>{{Cite journal|last=Gabriel| first=Jean-Christophe P.| title=Large Scale Production of Carbon Nanotube Transistors: A Generic Platforms for Chemical Sensors| journal=Mat. Res. Soc. Symp. Proc.|volume=762|year=2003|pages=Q.12.7.1| url=http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2606&DID=110422&action=detail}}</ref> इस तरीके को सबसे पहले नैनोमिक्स इंक. द्वारा पेटेंट करवाया गया।<ref>[http://www.nano.com Nanōmix - Breakthrough Detection Solutions with the Nanoelectronic Sensation Technology]</ref> (मूल आवेदन की तिथि जून 2002<ref>{{Cite journal|last=Gabriel| first=Jean-Christophe P. |title=Dispersed Growth Of Nanotubes on a substrate|journal=Patent WO 2004040671A2|url=http://www.freepatentsonline.com/EP1560958.html}}</ref>) यह सबसे पहले [[अमेरिकी नौसेना अनुसंधान प्रयोगशाला]] द्वारा शैक्षणिक साहित्य में 2003 में स्वतंत्र शोध कार्य के माध्यम से प्रकाशित हुआ। इस विधि ने नैनोमिक्स को एक लचीले और पारदर्शी सबस्ट्रेट पर पहला ट्रांजिस्टर बनाने में भी सक्षम किया।<ref>{{Cite journal|last=Bradley| first=Keith|title=Flexible nanotube transistors| journal=Nano Letters|volume=3|year=2003|pages=1353–1355|doi=10.1021/nl0344864|last2=Gabriel|first2=Jean-Christophe P.|last3=Grüner|first3=George}}</ref><ref>{{Cite journal|last=Armitage| first=Peter N. |title=Flexible nanostructure electronic devices|journal=United States Patent 20050184641 A1|url=http://www.freshpatents.com/Flexible-nanostructure-electronic-devices-dt20050825ptan20050184641.php|format={{dead link|date=November 2009}}}}</ref>
 
कार्बन नैनोट्यूब के बड़े ढांचे को इलेक्ट्रॉनिक सर्किट के तापीय प्रबंधन के लिए इस्तेमाल किया जा सकता है। लगभग 1&nbsp;mm मोटी एक कार्बन नैनोट्यूब परत का उपयोग एक विशेष सामग्री के रूप में शीतलक बनाने के लिए किया गया, इस सामग्री का घनत्व बहुत कम है, इसी तरह की तांबे की संरचना से ~ 20 गुना कम वजन, जबकि दोनों सामग्रीयों के लिए शीतलक विशेषताएं समान हैं।<ref>{{cite journal|author=K. Kordas|title=Chip cooling with integrated carbon nanotube microfin architectures|journal=Appl. Phys. Lett.|volume=90|page=123105|year=2007|doi=10.1063/1.2714281|last2=Tóth|first2=G.|last3=Moilanen|first3=P.|last4=Kumpumäki|first4=M.|last5=Vähäkangas|first5=J.|last6=Uusimäki|first6=A.|last7=Vajtai|first7=R.|last8=Ajayan|first8=P. M.}}</ref>
पंक्ति 311:
 
=== सौर सेल ===
[[न्यू जर्सी प्रौद्योगिकी संस्थान]] में विकसित सौर कोशिकाएं, सांप सदृश ढांचे के निर्माण के लिए कार्बन नैनोट्यूब और कार्बन [[बकिबॉल]] ([[फुलरीन]] के रूप में ज्ञात) के एक मिश्रण द्वारा गठित, कार्बन नैनोट्यूब काम्प्लेक्स का उपयोग करती हैं। बकिबॉल, इलेक्ट्रॉनों को फंसाते हैं, हालांकि वे इलेक्ट्रॉनों को प्रवाहित नहीं कर सकते. [[पॉलीमर]] को उत्तेजित करने के लिए सूरज की रोशनी जोड़ें और बकिबॉल इलेक्ट्रॉनों को पकड़ लेगा। तांबे के तारों की तरह बर्ताव कर रहे नैनोट्यूब, तब इलेक्ट्रॉन या विद्युत् प्रवाह को बनाने में सक्षम होंगे। <ref>{{cite news|url=http://www.sciencedaily.com/releases/2007/07/070719011151.htm|title=New Flexible Plastic Solar Panels Are Inexpensive And Easy To Make|publisher=ScienceDaily|date=July 19, 2007}}</ref>
 
=== अल्ट्रासंधारित्र ===
पंक्ति 335:
== खोज ==
{{seealso|Timeline of carbon nanotubes}}
2006 में ''कार्बन'' पत्रिका में मार्क मोंथिअक्स और व्लादिमीर कुज्नेत्सोव द्वारा लिखे संपादकीय ने कार्बन नैनोट्यूब के रोचक और अक्सर गलत रूप से पेश उत्पत्ति की व्याख्या की। शैक्षिक और लोकप्रिय साहित्य का एक बड़ा हिस्सा, अभ्रकीय कार्बन से निर्मित खोखले, नैनोमीटर आकार के ट्यूब का श्रेय 1991 में [[NEC]] के [[सुमिओ लिजिमा]] को देता है।<ref name="carbon">{{Cite journal|title=Who should be given the credit for the discovery of carbon nanotubes?|doi=10.1016/j.carbon.2006.03.019|first=Marc|last=Monthioux|journal=Carbon|volume=44|year=2006|url=http://www.cemes.fr/fichpdf/GuestEditorial.pdf |format=PDF|page=1621|last2=Kuznetsov|first2=V}}</ref>
 
1952 में एल.वी. रादुशकेविच और वी. एम. लुक्यानोविच ने सोवियत ''जर्नल ऑफ़ फिज़िकल केमिस्ट्री'' में कार्बन से बने 50 नैनोमीटर व्यास के ट्यूबों के स्पष्ट चित्र प्रकाशित किये। <ref>{{cite journal|last=Радушкевич|first=Л. В.|year=1952|title=О Структуре Углерода, Образующегося При Термическом Разложении Окиси Углерода На Железном Контакте|journal=Журнал Физической Химии|volume=26|pages=88–95|url=http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|format=PDF|language=Russian|archiveurl=http://web.archive.org/web/20060827101001/http://carbon.phys.msu.ru/publications/1952-radushkevich-lukyanovich.pdf|archivedate=2006-08-27}}</ref> मोटे तौर पर इस खोज पर किसी का ध्यान नहीं गया, चूंकि यह लेख रूसी भाषा में प्रकाशित किया गया था और पश्चिमी वैज्ञानिकों की सोवियत प्रेस में पहुंच [[शीत युद्ध]] के दौरान सीमित ही थी। संभावना है कि कार्बन नैनोट्यूब इस तिथि से पहले उत्पादित किए गए थे, लेकिन [[संचरण इलेक्ट्रॉन माइक्रोस्कोप]] (TEM) के आविष्कार ने इन संरचनाओं को प्रत्यक्ष देखने की अनुमति दी।
पंक्ति 350:
आर्क डिस्चार्ज तकनीक को प्रारंभिक स्तर पर प्रसिद्ध बकमिन्स्टर फुलरीन उत्पादन के लिए अच्छी तरह जाना जाता था,<ref name="Kratschmer-C60">{{Cite journal|first=W.|last=Krätschmer|year=1990|title=Solid C60: a new form of carbon|journal=Nature|volume=347|pages=354–358|doi=10.1038/347354a0|last2=Lamb|first2=Lowell D.|last3=Fostiropoulos|first3=K.|last4=Huffman|first4=Donald R.}}</ref> और ऐसा प्रतीत हुआ कि इन परिणामों ने फुलरीन से संबंधित आकस्मिक खोजों का विस्तार किया। मास स्पेक्ट्रोमेट्री में फुलरीन का मूल अवलोकन प्रत्याशित नहीं था,<ref>{{Cite journal|first=H. W.|last=Kroto|year=1985|title=C60: Buckminsterfullerene|doi=10.1038/318162a0|journal=Nature|volume=318|pages=162–163|last2=Heath|first2=J. R.|last3=O'Brien|first3=S. C.|last4=Curl|first4=R. F.|last5=Smalley|first5=R. E.}}</ref> और क्रेटश्मर और हफमन द्वारा थोक-उत्पादन तकनीक का प्रयोग कई वर्षों तक किया गया यह अनुभव करने से पहले तक कि यह फुलरीन का उत्पादन करती है।<ref name="Kratschmer-C60" />
 
नैनोट्यूब की खोज एक विवादास्पद मुद्दा बनी हुई है, खासकर इसलिए क्योंकि शोध में शामिल कई वैज्ञानिक नोबेल पुरस्कार के संभावित उम्मीदवार हो सकते हैं। कई लोगों का मानना है कि 1991 में लिजिमा की रिपोर्ट विशेष महत्व की है क्योंकि इसने कार्बन नैनोट्यूब को समग्र रूप से वैज्ञानिक समुदाय की जानकारी में पहुंचा दिया। कार्बन नैनोट्यूब की खोज के इतिहास की समीक्षा के लिए सन्दर्भ देखें.<ref name="carbon" />
 
नैनोट्यूब खोज के मामले के समान ही एक प्रश्न यह है कि सबसे पतला संभव कार्बन नैनोट्यूब क्या है। संभावित उम्मीदवार हैं: 2000 में सूचित करीब 0.40&nbsp;nm व्यास के नैनोट्यूब; लेकिन वे स्वतंत्र खड़े नहीं हैं, बल्कि जिओलाइट क्रिस्टल में संलग्न हैं<ref>{{cite journal|doi=10.1038/35040702|year=2000|last1=Tang|first1=Z. K.|last2=Wang|first2=N.|last3=Li|first3=G. D.|last4=Chen|first4=J. S.|journal=Nature|volume=408|pages=50}}</ref> या बहु-दीवार नैनोट्यूब के सबसे भीतरी खोल हैं।<ref>{{cite journal|doi=10.1038/35040699|year=2000|last1=Qin|first1=Lu-Chang|last2=Zhao|first2=Xinluo|last3=Hirahara|first3=Kaori|last4=Miyamoto|first4=Yoshiyuki|last5=Ando|first5=Yoshinori|last6=Iijima|first6=Sumio|journal=Nature|volume=408|pages=50}}</ref> बाद में, केवल 0.3&nbsp;nm व्यास वाले MWNTs के भीतरी खोल की खबर दी गई।<ref>{{cite journal|doi=10.1103/PhysRevLett.92.125502|title=Smallest Carbon Nanotube Is 3  Å in Diameter|year=2004|last1=Zhao|first1=X.|last2=Liu|first2=Y.|last3=Inoue|first3=S.|last4=Suzuki|first4=T.|last5=Jones|first5=R. O.|last6=Ando|first6=Y.|journal=Physical Review Letters|volume=92|pages=125502|pmid=15089683|issue=12}}</ref> सितम्बर 2003 तक, सबसे पतला मुक्त-खड़ा नैनोट्यूब, 0.43&nbsp;nm व्यास का है।<ref>{{cite journal|doi=10.1021/nl034080r|title=Smallest Freestanding Single-Walled Carbon Nanotube|year=2003|last1=Hayashi|first1=Takuya|last2=Kim|first2=Yoong Ahm|last3=Matoba|first3=Toshiharu|last4=Esaka|first4=Masaya|last5=Nishimura|first5=Kunio|last6=Tsukada|first6=Takayuki|last7=Endo|first7=Morinobu|last8=Dresselhaus|first8=Mildred S.|journal=Nano Letters|volume=3|pages=887}}</ref>