3,99,253
सम्पादन
Sanjeev bot (चर्चा | योगदान) छो (बॉट: वर्तनी एकरूपता।) |
Sanjeev bot (चर्चा | योगदान) छो (बॉट: वर्तनी एकरूपता।) |
||
{{Equation box 1
|indent=:
|title='''समय - निर्भर
|equation=<math>i \hbar \frac{\partial}{\partial t}\Psi = \hat H \Psi</math>
|cellpadding
{{Equation box 1
|indent=:
|title=''''समय - निर्भर
|equation=<math>i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \frac{-\hbar^2}{2m}\nabla^2 \Psi(\mathbf{r},t) + V(\mathbf{r},t) \Psi(\mathbf{r},t)</math>
|cellpadding
कल्पना कीजिए की एक कण जो स्वतंत्र रूप से अंतरिक्ष में घूम रहा है | इस कण के पास शायद गतिज ऊर्जा (kinetic energy) है और शायद किसी बाहरी बल के कारण संभावित ऊर्जा (potential energy) भी है | तो किसी भी न्यूटोनियन कण के लिए संपूर्ण यांत्रिक ऊर्जा का समिकरण <math>E = \frac{1}{2} m \vec v.\vec v + U </math> होता है जहाँ <math> \vec v </math> तीन आयाम कार्तीय निर्देशांक के अनुसार वेग वेक्टर है अौर <math> U </math> कण की संभावित ऊर्जा है | अाप <math> U </math> के जगह <math> V </math> का भी इस्तमाल कर सकते हैं | अगर <math> v_x, v_y, v_z </math> इस वेग वेक्टर के घटकों को माना जाए तो गतिज ऊर्जा का समिकरण को
<math>E =
इन घटकों के हिसाब से भी लिखा जा सकता है | अगर समिकरण <math> (1) </math> के दाईं ओर पर मीटर और विभाजक दोनों को <math> m </math> से गुणा किया जाए तो
जहाँ <math> p_x, p_y, p_z </math> गति वेक्टर के, तीन आयाम कार्तीय निर्देशांक के अनुसार, गति वेक्टर के घटक हैं | क्वांटम यांत्रिकी में <math> -i \hbar \vec \nabla </math> गति ऑपरेटर (momentum operator) है, जहाँ पर
<math> \vec \nabla = \hat i \frac{\partial}{\partial x} + \hat j \frac{\partial}{\partial y} + \hat k \frac{\partial}{\partial z} </math>
इसे 'डेल् ऑपरेटर' (Del Operator) कहते हैं | इस ऑपरेटर का मूल आंशिक अंतर कलन में है | अगर यह ऑपरेटर एक खास श्रेनी के फंक्शन (function), जिसे आईगेनफंक्शन (eigenfunction) कहते है, पर कार्य करता है तो इस कार्य का परिणाम वही फंक्शन एक निरंतर अंक से गुणित, जिसे आईगेनवेल्यू (eigenvalue) कहते है, होता है | आईगेनफंक्शन ऑपरेटर निर्भर होता है | यह आईगेनवेल्यू इस ऑपरेटर के मामले में कण की गती बताती है | क्वांटम यांत्रिकी में कई ऑपरेटर होते है, यह ऑपरेटर वही चर होते है जो एक कण के लिए प्रयोगों द्वारा मापें जा सकते हैं | इन चरों को 'अवलोकनयोगी' (observables) कहते हैं | गती, रफतार, स्थान, संभावित ऊर्जा अौर ऊर्जा अवलोकनयोगी चरें हैं |
* <math> \Psi </math> को दो बार डिफ़्रेंशिएबल (differentiable) होना चाहिए, क्योंकि श्रोडिंगर समीकरण दुसरी क्रम का अंतर समीकरण (differential equation) है |
*<math> \int^\infty_{-\infty} \Psi \Psi^* d \tau = 1 </math> इसे 'नार्मलाज़ेशन शर्त' (normalization condition) कहते हैं | मैक्स बार्ण, जो एक विश्वविख्यात भूगोल शास्तरी थे, उन्होंनें व्याख्या कर कहा की <math> \Psi \Psi^* = |\Psi|^2 </math> को प्रायिकता घनत्व फंक्शन (probability density function) के तरह माना जा सकता है, जिसे अंतरिक्ष के कुछ हिस्से पर एकीकरण
== सन्दर्भ ==
|