"समावयवता": अवतरणों में अंतर

→‎संरचना समावयवता: ऑटोमेटिक वर्तनी सु, replaced: → (11)
→‎प्रकाशिक समावयवता (Optical isomerism): छोटा सा सुधार किया।
टैग: मोबाइल संपादन मोबाइल एप सम्पादन
पंक्ति 22:
 
=== प्रकाशिक समावयवता (Optical isomerism) ===
[[लैक्टिक अम्ल]] के अध्ययन में देखा गया है nकिकि लैक्टिक अम्ल तीन प्रकार का होता है, दो प्रकाशत: सक्रिय और एक प्रकाशत: निष्क्रिय। इसी प्रकार [[टार्टेरिक अम्ल]] भी चार प्रकार का होता है, दो प्रकाशत: सक्रिय और दो प्रकाशत: निष्क्रिय। इनकी उपस्थिति की संतोषप्रद व्याख्या उस समय तक ज्ञात सिद्धांतों से नहीं हो सकती थी। इनकी व्याख्या के लिए जो सिद्धांत प्रतिपादित हुआ है, उसे त्रिविम समावयवता का सिद्धांत कहते हैं और इससे रसायन की एक नई शाखा की नींव पड़ी है, जिसे [[त्रिविम रसायन]] कहते हैं। इस नए सिद्धांत के प्रतिपादक डच रसायनज्ञ, वांत हॉफ़ (Van't Hoff) और दूसरे फ्रांसीसी रसायtनज्ञ, ल बेल (Le Bel), थे। दोनों ने स्वतंत्र रूप से प्राय: एक ही समय 1774 ईसवी में इस सिद्धांत का प्रतिपादन किया और दोनों रसायनज्ञों के मूल सिद्धांत प्राय: एक ही हैं, यद्यपि विस्तार में कुछ अंतर है। इस सिद्धांतानुसार त्रिविमितीय [[चतुष्फलकी]] के केंद्र में कार्बन परमाणु स्थित रहता है और इसकी चारों संयोजकताएँ चतुष्फलक के चारों छोरों की ओर अभिमुख होती हैं। यदि इन चारों संयोजकताओं के साथ चार विभिन्न समूह संबंधित हों, तो ये ऐसी अवस्थाएँ उपस्थित करते हैं जिनकी व्यवस्था दो प्रकार से हो सकती है। यदि चारों समूह H, OH, COOH और CH<sub>3</sub>, होंi, जैसे लैक्टिक अम्ल में होते हैं, तो उनकी व्यवस्था, दक्षिणवर्त (H, OH, COOH, CH<sub>3</sub>)
और दूसरे में वामावर्त (H, CH<sub>3</sub>, COOH, OH) हो सकती है। ये दोनों रूप वैसे ही हैं जैसे कोई एक वस्तु और उसका प्रतिबिंब होता है। एक व्यवस्था प्रकाश को एक ओर जितना घुमाती है, दूसरी व्यवस्था प्रकाश के विपरीत दिशा में उतना ही घुमाएगी। इस प्रकार ऐसे यौगिक के दो प्रकाशीय रूप हो सकते हैं। यदि ये दोनों रूप सममात्रा में किसी विलयन में विद्यमान हों, तो ऐसा विलयन प्रकाशत: निष्क्रिय होगा। वस्तुत: निष्क्रिय लैक्टिक आम्ल ऐसा ही मिश्रण है, क्योंकि fयह अनेक विधियों से दो सक्रिय लैक्टिक अम्लों में विभेदित किया जा सकता है। चतुष्फलक के मध्य में स्थित कार्बन परमाणु को असममित (asymmetric) कार्बन परमाणु कहते हैं और प्रकाश सक्रियता के लिए एक या एक से अधिक असमित कार्बन परमाणु का होना अनिवार्य है। इसके अभाव में प्रकाशीय सक्रियता संभव नहीं है। अनुभव और प्रयोगों से यह बात बिल्कुल ठीक प्रमाणित होती है। टार्टेंरिक अम्ल में दो असममित कार्बन परमाणु होते हैं। टार्टेरिक अम्ल की विशेषता यह है कि इसके दोनों असममित कार्बन के साथ एक ही प्रकार के समूह संबद्ध हैं। यदि दोनों असaममित कार्बन के साथ ऐसे समूह संबद्ध हों जो दक्षिणवर्त हैं, तो वह यौगिक दक्षिणावर्त होगा तथा यदि दोनों असममित कार्बनों के साथ ऐसे समूह संबद्ध हों जो वामावर्त हैं, तो वह यौगिक वामावर्त होगा और यदि दोनों असममित कार्बन के साथ एक दक्षिणावर्त और दूसरा वामावर्त समूह संबद्ध हो, तो एक के प्रभाव को दूसरा निष्क्रिय कर देगा, जिससे वह यौगिक प्रकाशत: निष्क्रिय होगा। पर यह यौगिक ऐसा निष्क्रिय होगा कि उसे सक्रिय नहीं बनाया जा सकता। ऐसा ही टार्टेरिक अम्ल का रूप मेज़ो-टार्टेरिक अम्ल है। चौथा टार्टेरिक अम्ल ऐसा हो सकता है जिसमें दक्षिणावdर्त और वामावर्त टार्टेरिक अम्ल की सममात्रा विद्यमान हो। ऐसा यौगिक रेसिमिक अम्ल है। यह भी प्रकाशत: निष्क्रिय होता है, पर सक्रिय अवयवों में विभेदित किया जा सकता है। इस प्रकार इस सिद्धांत से चार प्रकार के टार्टेरिक अम्ल की उपस्थिति की व्याख्या सरलता से हो जाती है।