"परवलय" के अवतरणों में अंतर

आकार में कोई परिवर्तन नहीं ,  4 वर्ष पहले
सम्पादन सारांश रहित
[[चित्र:Parabola showing focus and reflective property.png|196px|thumb|right|परवलय के परावर्तक प्रगुण को प्रदर्शित करता एक ग्राफ; नियता (हरी) और नाभि व नियता को जोड़ रेखाएं (नीली)]]
[[गणित]] में '''परवलय''' (पैराबोला) एक द्विमीय [[वक्र]] है जिसे कई तरह से परिभाषित किया जाता है। एक परिभाषा परवलय को [[शांकव]] के एक विशेष रूप में परिभाषित करती है। इसके अनुसार, परवलय वह शांकव है जिसकी उत्केन्द्रता १ के बराबर होती है। परवलय को [[बिन्दुपथ]] के रूप में परिभाषित किया जा सकता है। परवलय किसी ऐसे बिन्दु का [[बिन्दुपथ]] है जिसकी किसी निश्चित [[रेखा]] से दूरी किसी निश्चित [[बिन्दु]] से दूरी के बराबर होती है। यहाँ उस रेखा को नियता (डायरेक्ट्रिक्स) एवं उस बिन्दु को नाभि (फोकस) कहते हैं।
उदाहरण के लिए, समीकरण yx<sup>2</sup>=4ax4ay एक परवलय को निरूपित करता है जिसकी नियता '''y = -a''' तथा नाभि '''(a,0)''' है।
[[श्रेणी:गणित]]
[[श्रेणी:ज्यामिति]]