"समूह (गणितशास्त्र)": अवतरणों में अंतर

(→‎प्रथम उदाहरण : पूर्णांक: पूर्णांक के उदाहरण को विकसित किया)
 
निम्नलिखित गुण नीचे दिए गए परिभाषा में दिए गए समूह के अभिगृहीतों के लिए एक पूर्णांक के रूप में कार्य करते हैं।
*किसी भी दो पूर्णांकों a और b के लिए, राशि a + b भी एक पूर्णांक है। यानी की, पूर्णांकों का [[जोड़|जोड़]] हमेशा एक पूर्णांक पैदा करता है। यह गुण ''[[संवरक]]'' के रूप में जाना जाता हैहै।
*सभी पूर्णांकियों a, b और c के लिए, (a + b) + c = a + (b + c)। शब्दों को अभिव्यक्त करते हुए, पहले a और b को जोड़कर, और उसके परिणाम को c से जोड़कर जो अंतिम परिणाम आता है, वही परिणाम a को b और c के जोड़ से जोड़ने पर आता है। इस विशेषता को ''[[साहचर्यता]]'' कहा जाता है।
*यदि a एक पूर्णांक है, तो 0 + a = a + 0 = a। शून्य को जोड़ का ''इकाई अवयव'' कहा जाता है, क्योंकि किसी भी पूर्णांक को शुन्य से जोड़ा जाये तो वही पूर्णांक प्राप्त होता है।
23

सम्पादन