"स्पेक्ट्रोस्कोपी": अवतरणों में अंतर

छो बॉट: वर्तनी एकरूपता।
छो बॉट: वर्तनी सुधार (तरंगदैर्ध्य)
पंक्ति 31:
{| class="wikitable"
|-
! '''क्षेत्र''' !! '''तरंगदैर्ध्यतरंगदैर्घ्य सीमा''' !! '''रश्मिस्रोत''' !! '''परिक्षेपण संयत्र''' !! '''अभिलेखन'''
|-
| सुदूर इन्फ्रारेड || 1 म्यू - 50 म्यू || तप्त ठोस || वक्रग्रेटिंग || ताप-विद्युत रिकार्डर
पंक्ति 87:
वक्र ग्रेटिंग स्पेक्ट्रोलेखी में लेंस की आवश्यकता नहीं होती है। रश्मिपुंज एक सँकरी झिरी से होकर ग्रेटिंग पर पड़ता है। परावर्तित रश्मियाँ स्वत: एक वृत्त पर केंद्रित हो जाती हैं। इस वृत्त को "रोलैंड वृत्त" कहते हैं। जिस वक्रतल पर रेखाएँ खुरची जाती हैं उसे "ग्रेटिंग ब्लैक" कहते हैं। रोलैंड वृत्त का अर्धव्यास "ब्लैक" के वक्रतार्धव्यास का आधा होता है। यह वृत्त ग्रेटिंग को उस स्थान पर स्पर्श करता है जहाँ इसका व्यास-ग्रेटिंग पर अभिलंब होता है। इसी अभिलंब के दूसरे सिरे पर झिरी का प्रत्यक्ष बिंब बनता है। इसे शून्य कोटि का स्पेक्ट्रम कहते हैं। इसके दोनों ओर रोलैंड वृत्त पर जो सर्वप्रथम स्पेक्ट्रम पाए जाते हैं उन्हें प्रथम कोटि का स्पेक्ट्रम कहा जाता है। इसी वृत्त पर और आगे क्रमश: कम तीव्रता के कई स्पेक्ट्रम मिलते हैं। इन्हें क्रमश: द्वितीय, तृतीय आदि कोटि का स्पेक्ट्रम कहा जाता है।
 
स्पेक्ट्रोलेखी की उपयोगिता दो बातों पर निर्भर करती है। पहली उसकी परिक्षेपण क्षमता और दूसरी [[विभेदन क्षमता]] (Resolving power) है। किसी स्पेक्ट्रोलेखी में परिक्षेपक संयंत्र से निकलने पर विभिन्न तरंगदैर्घ्य की रश्मियाँ एक दूसरी से जितना ही अधिक पृथक् हो जाती हैं उस स्पेक्ट्रोलेखी की परिक्षेपण क्षमता उतना ही अधिक होती है। इसी प्रकार दो अत्यंत समीपवर्ती तरंगदैर्घ्य की रेखाओं को एक दूसरी से ठीक ठीक अलग दिखाने की क्षमता को विभेदनक्षमता कहते हैं। यदि किसी स्पेक्ट्रम में दो ऐसी रेखाएँ ली जाएँ जिनमें एक का तरंगदैर्ध्यतरंगदैर्घ्य <math>{\lambda}</math> और दूसरी का <math>{\lambda}</math> +<math>{\Delta\lambda}</math> हो तो अधिक विभेदनक्षमतावाले स्पेक्ट्रोलेखी में दोनों रेखाएँ एक दूसरी से अलग दिखाई देती हैं किंतु कम विभेदक स्पेक्ट्रोलेखी में दोनों मिलकर केवल एक ही रेखा दिखाई पड़ती है। विभेदनक्षमता को निम्नलिखित अनुपात द्वारा व्यक्त किया जाता है।
 
<math>R = {\lambda\over\Delta\lambda}</math>
पंक्ति 97:
किसी एकवर्ण रश्मि का तरंगदैर्घ्य अत्यंत शुद्धतापूर्वक ज्ञात करने के लिए व्यतिकरणमापी (Interferometer) काम में लाए जाते हैं। फेवरीपेरो इंटरफेरोमीटर और माइकेल्सन इंटरफेरोमीटर इस कार्य के लिए अत्यधिक उपयोगी होते हैं।
 
सभी रेखाओं का तरंगदैर्घ्य व्यक्तिकरणमापी से ही ज्ञात करना कठिन और बहुधा असंभ्ाव है अत: किसी तत्व की तीक्ष्ण और प्रखर रेखा को प्राथमिक मानक (Primary standard) मान लिया जाता है और इसकी सहायता से अन्य रेखाओं के तरंगदैर्घ्य ज्ञात किए जाते हैं। कैडगियम तत्व की जाल रेखा का तरंगदैर्घ्य 6438.4696 A को प्राथमिक मानक माना गया है। हाल ही में (1958-59 ई.) बहुत से वैज्ञानिकों ने हीलियम् गैस की रेखा 5015.6784 (A°) को प्राथमिक मानक मानने का निर्णय किया है। शुद्ध लौह तथा विरल गैसों के तरंगदैर्ध्यतरंगदैर्घ्य गौण मादक (Secondary standard) माने जाते हैं। किसी स्पेक्ट्रम का फोटो लेते समय फोटोप्लेट को यथास्थान रखकर मुख्य स्पेक्ट्रम के साथ-साथ लोहे या ताँबे के विद्युत्आर्क का स्पेक्ट्रम भी ले लिया जाता है और इसकी रेखाओं से तुलना करके, सूत्रों की सहायता से, स्पेक्ट्रम की रेखाओं या बैंडशीर्षों का तरंगदैर्ध्यतरंगदैर्घ्य ज्ञात कर लिया जाता है। रेखाओं की पारस्परिक दूरियाँ कैंपरेटर नामक उपकरण का सहायता से मापी जाती हैं।
 
== स्पेक्ट्रमों की उत्पत्ति का सिद्धांत ==
प्रत्येक परमाणु में एक नाभिक (nucleus) होता है। इसके चारों ओर कई इलेक्ट्रान नियत कक्षाओं में घूमते रहते हैं। इलेक्ट्रोनों की कुल संख्या नाभिक के पोटानों की संख्या के बराबर होती है। भिन्न-भिन्न कक्षाओं में इलेक्ट्रानों की संख्या भी नियत होती है। कोई भी इलेक्ट्रान किसी नियत कक्षा में ही रह सकता है। वास्तव में ये कक्षाएँ परमाणु की उर्जास्थिति की द्योतक होती हैं। यदि कोई इलेक्ट्रान किसी अन्य रिक्त कक्षा में चला जाए तो परमाणु की ऊर्जास्थिति बदल जाती हैं। भीतरी कक्षाओं के इलेक्ट्रानों का हटना प्राय: संभव नहीं होता है किंतु अंतिम कक्षा का इलेक्ट्रान बाहरी ऊष्मा या विद्युत् शक्ति से उत्तेजित होने पर अगली कक्षा में जा सकता है। यदि पहली कक्षा में उससे संबद्ध ऊर्जा क1 और उससे ठीक अगली कक्षा में क2 है तो पहली से दूसरी उच्चतर ऊर्जास्थिति में जाने के लिए इलेक्ट्रान केवल क2 - क1 ऊर्जा ही ले सकता है। उत्तेजित स्तर पर जाने के बाद ही वह पुन: पूर्वस्थिति में वापस आता है और क2 - क1 ऊर्जा उत्सर्जित करता है। इस उत्सर्जित या अवशोषित ऊर्जा का मान '''hn''' ही होता है अर्थात् इलेक्ट्रान एक ऊर्जास्तर से ठीक अगले ऊर्जास्तर में जाने या वापस आने में निश्चित ऊर्जा ण्द अर्ग ही ले सकता है या दे सकता है। इससे कम ऊर्जा का आदान-प्रदान नहीं हो सकता है। '''h''' एक स्थिर संख्या है और '''n''' उत्सर्जित रश्मि की आवृत्ति (frequency) है। '''h n''' अर्ग ऊर्जा का एक पैकेट या "क्वांटम" कहा जाता है। इसी प्रकार जब इलेक्ट्रान अन्य ऊर्जास्तरों में संक्रमण करता है तो भिन्न-भिन्न आवृत्ति की रश्मियाँ प्राप्त होती हैं और स्पेक्ट्रम में तदनुकूल बहुत सी रेखाएँ बन जाती हैं। अणु, परमाणुओं में इलेक्ट्रानों की व्यवस्था के अनुसार कई इलेक्ट्रानिक ऊर्जास्तर पाए जाते हैं और इलेक्ट्रानिक संक्रमण के कारण विभिन्न प्रकार के स्पेक्ट्रम प्राप्त होते हैं। परमाणुओं में केवल इलेक्ट्रानिक ऊर्जास्थितियाँ ही पाई जाती हैं। अत: इलेक्ट्रानों के संक्रमण (transition) से निश्चित तरंगदैर्ध्यतरंगदैर्घ्य की रश्मियाँ निकलती हैं और रेखीय स्पेक्ट्रम प्राप्त होता है। अणुओं में तीन प्रकार की ऊर्जा होती है - इलेक्ट्रानिक, कंपनजन्य (vibrational) और घूर्णनजन्य (rotational)। इलेक्ट्रानिक ऊर्जा का मान और भी कम होता है। जिस प्रकार इलेक्ट्रानिक ऊर्जास्थितियाँ नियत हैं उसी प्रकार कंपनजन्य और घूर्णनजन्य ऊर्जा की स्थितियाँ भी नियत हैं। अत: कंपनजन्य संक्रमण से पट्ट या बैंड प्राप्त होता है। प्रत्येक बैड में घूर्णनजन्य संक्रमण से रेखाएँ प्राप्त होती हैं। ये बहुत पास पास होती हैं अत: छोटे स्पेक्ट्रोदर्शी से अलग-अलग नहीं दिखाई पड़ती हैं और स्पेक्ट्रम में विभिन्न वर्ण के बैंड ही दिखाई पड़ते हैं। अधिक परिक्षेपण तथा विभेदनक्षमतावाले स्पेक्ट्रोदर्शी से इन रेखाओं को देखा जा सकता है। दो से अधिक परमाणुवाले अणुओं की घूणन रेखाएँ और भी पास-पास होती हैं अत: उन्हें देखना कठिन होता है। बहुपरमाणुक अणुओं की घूर्णनरेखाओं को देखना अब तक संभव नहीं हुआ है।
 
== स्पेक्ट्रमदर्शी के उपयोग ==