"ऊष्मा": अवतरणों में अंतर

पंक्ति 22:
:: CaCO<sub>3</sub> → CaO + CO<sub>2</sub>
 
==अवस्था परिवर्तन==
== उपशाखाएँ ==
उष्मा के प्रभाव से पदार्थों में परिवर्तन किया जा सकता है और कुछ अस्थायी यौगिकों को छोड़कर सब का अस्तित्व गैस, द्रव और ठोस, इन तीनों रूपों में सम्भव है। सामान्य [[वायुमण्डलीय दाब]] पर द्रव का ठोस अथवा वाष्प में परिवर्तन निश्चित तापों पर होता है जिनको हिमांक और क्वथनांक कहते हैं। उपर्युक्त दाब पर यदि एक ग्राम पदार्थ का अवस्थापरिवर्तन किया जाए तो उष्मा की एक निश्चित मात्रा या तो उत्पन्न अथवा शोषित होती है। इसको [[गुप्त उष्मा]] (लेटेंट हीट) कहते हैं। ताप की उचित वृद्धि होने पर सब ठोस द्रव में बदल जाते हैं और इसी प्रकार गैसों को निम्नलिखित विधियों से द्रवों में और उसके उपरान्त ठंडा करने पर ठोसों में बदला जा सकता है। ठोस के रूप में बदली जानेवाली अंतिम गैस [[हीलियम]] है जिसको ठोस बनाने के लिए द्रव को ठंडा करने के साथ ही उसपर अत्यधिक [[दाब]] भी लगाना पड़ता है।
 
प्रत्येक गैस का अपना एक [[क्रांतिक ताप]] (क्रिटिकल टेंपरेचर) होता है। यदि गैस का ताप इससे कम हो तो केवल दाब बढ़ाने से ही उसे द्रव बनाना संभव होता है, अन्यथा सर्वप्रथम ठंडा करके उसका ताप क्रांतिक ताप से नीचे ले आते हैं। द्रव के रूप में बदली जानेवाली अंतिम गैसें वायु, हाइड्रोजन और हीलियम हैं। वायु को क्रांतिक ताप के नीचे ठंडा करने के लिए जूल-टामसन-प्रभाव का उपयोग करते हैं। यदि कोई उच्च दाब की गैस महीन छेदों में से होकर कम दाब वाले भाग में निकाली जाए तो वह प्राय: ठंडी हो जाती है। इसी को जूल-टामसन-प्रभाव कहते हैं। इसकी मात्रा बहुत कम होती है। उदाहरणार्थ यदि छेद के दोनों और दाब की मात्रा क्रमानुसार ५० वायुमंडल और १ वायुमंडल हो तो साधारण ताप ही हवा केवल ११.७° सेल्सियस ठंडी होती है। किंतु एक बार ठंडी होनेवाली गैस ऊपर उठकर आनेवाली गैस को ठंडी कर देती है। जब गैस के इस ठंडे अंश पर जूल-टामसन-प्रभाव पड़ता है तो यह और अधिक ठंडी हो जाती है कि उसका ताप क्रांतिक ताप से नीचे चला जाता है और वह केवल दाब के प्रभाव से ही द्रव में बदल जाती है। वायु के द्रवण (लीक्विफ़ैक्शन) की दो मशीनें लिंडे और क्लॉड-हाईलैंड के नाम से प्रसिद्ध हैं। प्रथम उपकरण में केवल उपर्युक्त विधि का ही प्रयोग होता है, किंतु दूसरे में इस विधि के अतिरिक्त गैस का कुछ अंश एक इंजिन के पिस्टन को चलाता है। अतः काम करने के कारण यह अंश स्वतः ठंडा हो जाता है।
 
साधारण ताप पर [[हाइड्रोजन]] और [[हीलियम]] ये दोनों गैसें [[जूल-टामसन प्रभाव]] के कारण गरम हो जाती है, परन्तु ताप उचित मात्रा में कम होने पर सामान्य गैसों की तरह ही ठंडी होती हैं। अत: इन गैसों को पहले ही इतना ठंडा कर लेना आवश्यक है कि इस प्रभाव का लाभ उठाया जा सके। डेबर ने १८९८ में हाइड्रोजन को द्रवित वायु से ठंडा करने के पश्चात् लिंडे की उपर्युक्त विधि से द्रव में परिणत किया। ओन्स ने इसी विधि से १९०८ में अंतिम गैस हीलियम का द्रवण किया, किंतु [[जूल-टामसन प्रभाव]] का उपयोग करने से पूर्व इसको द्रव [[हाइड्रोजन]] से ठंडा कर लिया गया था।
 
वायुमंडलीय दाब पर हीलियम का क्वथनांक ४°K है। दाब घटाकर वाष्पन करने से ०.७°K तक पहुँचा जा सकता है। इससे भी कम ताप की उत्पत्ति रुद्धोष्म विचुम्बकन (ऐडियाबैटिक डिमैगनेटिज़ेशन) द्वारा की जा सकती है। इस विधि में विशेष समचुंबकीय (पैरामैगनेटिक) लवण प्रयुक्त होते हैं। ऐसे एक लवण को चुंबकीय ध्रुवों के बीच हीलियम गैस से भरी नली में लटकाया जाता है। यह नली स्थिर ताप के हीलियम द्रव से घिरी रहती है। चुंबकीय क्षेत्र स्थापित करने पर चुंबकन-उष्मा (हीट ऑव मैगनेटिज़ेशन) को हीलियम द्रव खींच लेता है, अतः ताप स्थिर रहता है। अब नली की हीलियम गैस निकाल ली जाती है जिससे लवण का हीलियम द्रव से उष्मिक पृथक्करण (इनसुलेशन) हो जाता है। इसके उपरांत चुंबकीय क्षेत्र हटा लेते हैं। लवण का विचुंबकन हो जाता है और इस कार्य में उष्मा व्यय होने से यह स्वत: ठंढा हो जाता है। इस प्रकार ताप को लगभग ०.००१° K तक घटाया जा सकता है। नाभिकीय विचुम्बकन (न्यूक्लियर डिमैग्नेटिज़ेशन) द्वारा इससे भी निम्न ताप की प्राप्ति हो सकती है।
 
==ऊष्मा अन्तरण==
'''[[ऊष्मा अन्तरण|ऊष्मा का स्थानान्तरण]]''' तीन विधियों से होता है [[चालन]] (कंडक्शन), [[संवहन]] (कन्वेक्शन) और [[विकिरण]] (रेडियेशन)। पहली दो विधियों में द्रव्यात्मक माध्यम की आवश्यकता है, किन्तु विकिरण की विधि में विद्युतचुम्बकीय [[तरंग|तरंगों]] द्वारा ऊष्मा का अन्तरण होता है। ये तरंगें प्रकाश की तरंगों के ही समान होती हैं, किंतु इनका तरंगदैर्घ्य बड़ा होता है। संवहन में द्रव अथवा गैस के गरम अंश गतिशील होकर उष्मा का अन्यत्र वहन करते हैं। इस विधि का उपयोग पानी अथवा भाप द्वारा मकानों के गरम रखने में किया गया है। चालन में पदार्थों के भिन्न खंड़ों में आपेक्षिक गति (रिलेटिव मोशन) नहीं होती; केवल उष्मा एक कण से दूसरे में स्थानांतरित होती रहती है।
 
चालन के संबंध में यह नियम है कि उष्मासंचारण की दर तापप्रवणता (टेंपरेचर ग्रेडिएंट) की समानुपाती होती है। यदि किसी पट्टिका की मोटाई सर्वत्र '''x''' हो और उसके आमने सामनेवाली सतहों का क्षेत्रफल '''A''' और उनके ताप क्रमानुसार t1 और t2 डिग्री सेल्सियस. हों तो उनके बीच एक सेकंड में संचारित होनेवाली उष्मा की मात्रा '''Q''' निम्नलिखित सूत्र से मिलेगी:
 
: Q = K A (t2-t1) / x
 
इस सूत्र के नियतांक K को पदार्थ की [[उष्मा चालकता]] कहते हैं। यह सूत्र उसी समय लागू होता है जब उष्मासंचारण धीर (स्टेडी) और सतहों के अभिलंबवत् हो। ऐसी अवस्था में सतहों के समांतर बीच की तहों में उष्मा के प्रवाह की दर एक ही होती है।
 
यदि स्थायी अवस्था न हो तो कुछ उष्मा तापवृद्धि में भी व्यय होती है जिसकी दर एक अन्य विसरणता (डिफ़िज़िविटी) नामक गुणांक पर निर्भर रहती है जो (K/pS) के बराबर होती है। p घनत्व और S विशिष्ट उष्मा है।
 
[[धातु]]ओं की उष्मिक चालकता बहुत अधिक होती है। इनके संबंध में बीडमैन-फ्रैज का नियम बहुत महत्वपूर्ण है। इसके अनुसार एक ही ताप पर सब धातुओं की उष्मिक और विद्युतीय चालकता का अनुपात एक ही होता है।
 
===ऊष्मामिति===
एक वस्तु से दूसरी वस्तु को दी गयी ऊष्मा की मात्रा का [[मापन]] '''[[ऊष्मामिति]]''' (Clorimetry) कहलाता है। ऊष्मा मापने का मात्रक [[कैलोरी]] है। ऊष्मा के मापन का बहुत महत्व है। विशेषतया [[विशिष्ट ऊष्मा]] का सैद्धांतिक रूप से बहुत महत्व है और इसके सम्बन्ध में कई सिद्धान्त प्रचलित हैं। अन्तरित ऊष्मा की मात्रा को गणना द्वारा भी निकाला जा सकता है जो ऊष्मा के कारण वस्तु के अन्य गुणों में परिवर्तन पर अधारित है। उदाहरण के लिए, वस्तु के [[ताप]] में वृद्धि, [[आयतन]] या ल्म्बाई में परिवर्तन, [[प्रावस्था]] परिवर्तन (जैसे बर्फ का पिघलना आदि)। [[रुद्धोष्म कार्य]] की गणना करके तथा उसके साथ [[ऊष्मागतिकी का प्रथम नियम|ऊष्मागतिकी के प्रथम नियम]] का उपयोग करते हुए भी अन्तरित ऊष्मा की गणना की जा सकती है।
 
===तापक्रम===
शीतोष्णता का अनुभव प्राणियों की स्पर्शेद्रिय का स्वाभाविक गुण है। इस अनुभव को मात्रात्मक रूप में व्यक्त करने के लिए एक पैमाने की आवश्यकता पड़ती है जिसको [[तापक्रम]] (स्केल ऑव टेंपरेचर) कहते हैं। अपेक्षाकृत अधिक गरम प्रतीत होनेवाली वस्तु के विषय में कहा जाता है कि उसका [[ताप]] (टेंपरेचर) अधिक है। पदार्थों में तापवृद्धि का कारण यह होता है कि उनमें ऊर्जा (एनर्जी) के एक विशेष रूप, उष्मा की वृद्धि हो जाती है। उष्मा सदैव ऊँचे तापवाले पदार्थों से निम्न तापवाले पदार्थों की ओर प्रवाहित होती है और उसकी मात्रा पदार्थ के द्रव्यमान (मास) तथा ताप पर निर्भर रहती है।
 
छूने से ताप का जो ज्ञान प्राप्त होता है वह मात्रात्मक और विश्वसनीय नहीं होता। इसी कारण इस कार्य के लिए यांत्रिक उपकरण प्रयुक्त होते हैं जिनको तापमापी अथवा थर्मामीटर कहते हैं। सर्वसाधारण में जिन थर्मामीटरों का प्रचार है उनमें काच (शीशे) की एक छोटी खोखली घुंडी (बल्ब) होती है जिसमें [[पारा]] या अन्य द्रव भरा रहता है। बल्ब के साथ एक पतली नली जुड़ी रहती है। [[तापीय प्रसरण]] (थर्मल एक्स्पैंशन) के कारण द्रव नली में चढ़ जाता है और उसके यथार्थ स्थान से ताप की डिग्री का बोध होता है। इस प्रकार के थर्मामीटर १६५४ ई. के लगभग फ़्लोरेन्स में टस्कनी के ग्रैंड डयूक फ़र्डिनैंड ने प्रचलित किए थे। तापक्रम निश्चित करने के लिए इन थर्मामीटरों को सर्वप्रथम पिघलते हुए शुद्ध [[हिम]] (बरफ) में रखकर नली में द्रव की स्थिति पर चिह्न बना देते हैं। सेंटीग्रेड पैमाने में [[हिमांक]] को शून्य मानते हैं तथा इसके और [[क्वथनांक]] के बीच की दूरी को १०० बराबर भागों में बाँट देते हैं जिनमें से प्रत्येक को डिग्री कहते हैं। आजकल इस पैमाने को सेलसियस पैमाना कहते हैं। फारेनहाइट मापक्रम में पूर्वोक्त हिमांक को ३२° और रोमर में शून्य डिग्री मानते हैं किंतु फारेनहाइट में पूर्वोक्त हिमांक और जल के क्वथंनाक की दूरी १८० भागों में और रोमर में ८० भागों में विभक्त की जाती है।
ऊष्मा मापने का मात्रक [[कैलोरी]] है। विज्ञान की जिस उपशाखा में ऊष्मा मापी जाती है, उसको '''[[ऊष्मामिति]]''' (Clorimetry) कहते हैं। इस मापन का बहुत महत्व है। विशेषतया [[विशिष्ट ऊष्मा]] का सैद्धांतिक रूप से बहुत महत्व है और इसके सम्बन्ध में कई सिद्धान्त प्रचलित हैं।
 
यदि दो भिन्न द्रवों से थर्मामीटर बनाकर उपर्युक्त विधि से अंकित किए जाएँ तो हिमांक और क्वथनांक को छोड़कर अन्य तापों पर सामान्यत: उनके पाठयांकों में भेद पाया जाएगा। अत: केवल उष्मागतिकी अंकों को उसी के अनुसार शुद्ध कर लेते हैं। इस पैमाने को परम ताप (ऐब्सोल्यूट टेंपरेचर) अथवा केल्विन मापक्रम भी कहा जाता है और इसके पाठयांक अंग्रेजी में T से व्यक्त किए जाते हैं। यह [[कार्नो चक्र]] पर आधारित है और इसका शून्य, परम शून्य होता है जिसका मान '''-२७३.२°''' सेल्सियस है और जिससे न्यूनतर ताप संभव नहीं हो सकता।
 
पूर्वोक्त शीशे-के-भीतर-द्रववाले तापमापियों की उपयोगिता सीमित ही होती है। ३००° सेल्सियस से ऊपर प्रायः विद्युतीय प्रतिरोध और ताप विद्युतीय (थर्मोइलेक्ट्रिक) थर्मामीटर प्रयुक्त होते हैं। अति उच्च ताप के मापनार्थ केवल विकिरण सिद्धांतों पर आधारित उत्तापमापियों (पायरोमीटरों) का प्रयोग होता है। शून्य डिग्री सेंटीग्रेड से नीचे गैस थर्मामीटर, विद्युतीय प्रतिरोध थर्मामीटर, हीलियम-वाष्प-दाब थर्मामीटर, और परम शून्य के निकट चुंबकीय प्रवृत्ति (मैगनेटिक ससेप्टिबिलिटी) पर आधारित थर्मामीटर प्रयुक्त होते हैं। इन सब तापमापियों के अंक या तो आदर्श गैस थर्मामीटरों से मिलाकर शुद्ध किए जाते हैं अथवा इनके शोधन के लिए उष्मागतिकी के सिद्धांतों का आश्रय लिया जाता है। (देखें, [[तापमापन]])
 
===तापीय प्रसरण===
तापवृद्धि होने पर प्राय: सब वस्तुओं के आकार में वृद्धि होती है जिसको '''तापीय प्रसरण''' (थर्मल एक्सपैंसन) कहते हैं। यदि शून्य ताप पर आयतन V<sub>0</sub> हो तो '''t°''' पर सन्निकटतः (approximate) आयतन निकालने के लिए निम्नलिखित सूत्र लागू होता है:
 
: V<sub>t</sub> = V<sub>0</sub> (1 + b t)
 
'''b''' को प्रसरण गुणांक कहते हैं। ताप में अधिक वृद्धि होने पर इस सूत्र में t के उच्च घात (पावर) भी आते हैं। ठोसों में पूर्वोक्त प्रकार का सूत्र लंबाई के प्रसरण के लिए भी होता है जिसके गुणांक को '''a''' से व्यक्त करते हैं और रेखीय प्रसरण गुणांक कहते हैं। यह '''b''' का १/३ होता है।
 
गैसों और द्रवों का प्रसरण गुणांक बहुत बड़ा होता है, अत: उसका मापन अपेक्षाकृत सरल है। गैसों में दाब और आयतन दोनों का प्रसरण होता है। यदि दाब स्थिर हो तो पूर्वोक्त सूत्र आयतन पर पूर्ण रूप से लागू होता है। आयतन स्थिर होने पर इसी सूत्र में V के स्थान पर P लिखकर दाब का सूत्र बन जाता है। '''b''' दोनों सूत्रों में एक ही है और इसका मान सब आदर्श गैसों में १/२७३ के लगभग होता है। सब गैसें क्रांतिक ताप से बहुत ऊँचे ताप पर आदर्श गैसें होती हैं, किंतु यदि इनका क्वथंनाक निकट न हो और दाब अधिक न हो तो सामान्यत: आक्सिजन, नाइट्रोजन हाइड्रोजन ओर हीलियम को आदर्श गैसें कहते हैं। सब आदर्श गैसों पर निम्नलिखित सूत्र लागू होता है :
 
: P V = R T
 
जिसमें P दाब और V आयतन है। T परम ताप है जिसकी मात्रा सेंटीग्रेड ताप में २७३ जोड़ने पर प्राप्त होती है। R को [[सार्वत्रिक गैस नियतांक]] कहते हैं। एक ग्राम-अणु (ग्राम-मॉलिक्यूल) गैस के लिए इसकी मात्रा लगभग २ कैलरी अथवा ८.३ जूल होती है।
 
ठोसों का प्रसरण गुणांक बहुत कम होता है, अतः इसके मापन मे विशेष विधियाँ प्रयुक्त होती हैं। माणिभ (क्रिस्टल) बहुत छोटे होते हैं, अत: उनके प्रसरण का मापन और भी दुष्कर होता है। एक उदाहरण में क्रिस्टल पट्टिका और सिलिका की पट्टिका के बीच में प्रकाशीय व्यतिकरण धारियाँ (ऑप्टिकल इंटरफ़ियरेन्स फ्रंजेज़) उत्पन्न की जाती हैं। तापवृद्धि से धारियाँ स्थानांतरित हो जाती हैं जिसके मापन से गुणांक निकाला जा सकता है। उच्च सम्मिति (सिमेट्री) के क्रिस्टलों को छोड़कर अन्य क्रिस्टलों के प्रसरणगुणांक दिशा के अनुसार भिन्न होते हैं। ठोसों के संबंध में ग्रीनाइज़न का यह नियम है कि ''प्रत्येक धातु का प्रसरण गुणांक उसकी स्थिर दाबवाली विशिष्ट उष्मा का समानुपाती होता है।''
 
===ऊष्मा अन्तरणइंजन===
{{मुख्य|ऊष्मा इंजन}}
'''[[ऊष्मा अन्तरण|ऊष्मा का स्थानान्तरण]]''' तीन विधियों से होता है [[चालन]], [[संवहन]] और [[विकिरण]]। पहली दो विधियों में द्रव्यात्मक माध्यम की आवश्यकता है, किन्तु विकिरण की विधि में [[तरंग|तरंगों]] द्वारा ऊष्मा का अंतरण होता है।
 
===अणुगति सिद्धान्त===
Line 39 ⟶ 82:
'''ऊष्मागतिकी का दूसरा नियम''' यह कहता है कि ऐसा संभव नहीं और एक ही ताप की वस्तु से यांत्रिक ऊर्जा की प्राप्ति नहीं हो सकती। ऐसा करने के लिये एक निम्न तापीय पिंड ([[संघनित्र]]) की भी आवश्यकता होती है। किसी भी इंजन के लिये उच्च तापीय भट्ठी से प्राप ऊष्मा के एक अंश को निम्न तापीय पिंड को देना आवश्यक है। शेष अंश ही यांत्रिक कार्य में काम आ सकता है। समुद्र के पानी स ऊष्मा लेकर उससे जहाज चलाना इसलिये संभव नहीं कि वहाँ पर सर्वत्र समान ताप है और कोई भी निम्न तापीय वस्तु मौजूद नहीं। इस नियम का बहुत महत्व है। इसके द्वारा ताप के परम पैमाने की संकल्पना की गई है। दूसरा नियम परमाणुओं की गति की अव्यवस्था (disorder) से संबंध रखता है। इस अव्यवस्थितता को मात्रात्मक रूप देने के लिये एंट्रॉपि (entropy) नामक एक नवीन भौतिक राशि की संकल्पना की गई है। उष्मागतिकी के दूसरे नियम का एक पहलू यह भी है। कि प्राकृतिक भौतिक क्रियाओं में एंट्रॉपी की सदा वृद्धि होती है। उसमें ह्रास कभी नहीं होता।
 
'''ऊष्मागतिकी के तीसरे नियम''' के अनुसार शून्य ताप पर किसी ऊष्मागतिक निकाय की [[एंट्रॉपी]] शून्य होती है। इसका अन्य रूप यह है कि किसी भी प्रयोग द्वारा [[शून्य परम ताप]] की प्राप्ति सम्भव नहीं। हाँ हम उसके अति निकट पहुँच सकते हैं, पर उस तक नहीं।
 
ऊष्मागतिकी के प्रयोग का क्षेत्र बहुत विस्तृत है। विकिरण के ऊष्मागतिक अध्ययन द्वारा एक नवीन और क्रांतिकारी विचारधारा [[क्वान्टम सिद्धान्त]] प्रस्फुटित हुआ।
"https://hi.wikipedia.org/wiki/ऊष्मा" से प्राप्त