"ऊष्मागतिकी के सिद्धान्त": अवतरणों में अंतर

No edit summary
टैग: मोबाइल संपादन मोबाइल वेब संपादन
पंक्ति 9:
जूल के नियमानुसार ऊष्मा गतिकी का प्रथम नियम [[ऊर्जा संरक्षण का नियम]] ही है। W=JHA निकाय को दी गर्इ ऊष्मा सम्पूर्ण रूप से कार्य में परिवर्तित नहीं होता। इसका कुछ भाग आन्तरिक ऊर्जा वृद्धि में व्यय होता है एवं बाकी कार्य में बदलता है अत: प्रथम नियम इस प्रकार होगा -
 
: ∆Q = ∆U + ∆Wहम ऐसी दीवारों की कल्पना करेंगे जो विभिन्न द्रवों को एक दूसरे से अलग करती हैं। ये दीवारें इतनी सूक्ष्म होंगी कि इन द्रवों की पारस्परिक अंतरक्रिया को निश्चित करने के अतिरिक्त उन द्रवों के गुणधर्म के ऊपर उनका अन्य कोई प्रभाव नहीं होगा। द्रव इन दीवारों के एक ओर से दूसरी ओर न जा सकेगा। हम यह भी कल्पना करेंगे कि ये दीवारें दो तरह की हैं। एक ऐसी दीवारें जिनसे आवृत द्रव में बिना उन दीवारों अथवा उनके किसी भाग को हटाए हम कोई परिवर्तन नहीं कर सकते और उन द्रवों में हम विद्युतीय या चुंबकीय बलों द्वारा परिवर्तन कर सकते हैं क्योंकि ये बल दूर से भी अपना प्रभाव डाल सकते हैं। ऐसी दीवारों को हम "स्थिरोष्म" दीवारें कहेंगे।
: ∆Q = ∆U + ∆W
 
दूसरे प्रकार की दीवारों को हम "उष्मागम्य" (डायाथर्मानस) दीवारें कहेंगे। ये दीवारें ऐसी होंगी कि साम्यावस्था में इनके द्वारा अलग किए गए द्रवों की दाब तथा आयतन के मान स्वेच्छ नहीं होंगे, अर्थात् यदि एक द्रव की दाब एवं आयतन और दूसरे द्रव की दाब निश्चित कर दी जाए तो दूसरे द्रव का आयतन भी निश्चित हो जाएगा। ऐसी अवस्था में पहले द्रव की दाब एवं आयतन P1 और V1 तथा दूसरे द्रव की दाब एवं आयतन P2 और V2 में एक संबंध होगा जिसे हम निम्नांकित समीकरण द्वारा प्रकट कर सकते हैं :
 
F (P1, V1, P2, V2) = 0 (1)
यह समीकरण उन द्रवों के तापीय संबंध का द्योतक है। दीवार का उपयोग केवल इतना है कि पदार्थ एक ओर से दूसरी ओर नहीं जा सकता। अनुभव द्वारा हम यह भी जानते हैं कि यदि एक द्रव के साथ अन्य द्रवों की तापीय साम्यावस्था हो तो स्वयं इन द्रवों में आपस में तापीय साम्यावस्था होगी। इसी को उष्मागतिकी का शून्यवाँ सिद्धांत कहते हैं।
 
यदि तापीय साम्यवस्थावाले तीन द्रवों के दबाव तथा आयतन क्रमश: (P1, V1), (P2, V2), तथा (P3,V3) हों तो इनमें समीकरण (1) की भाँति निम्नलिखित समीकरण होंगे :
 
f1 (p1, V1, p2, V2) = 0 ; f2 (p2, V2, p3, V3)= 0 ; f3 (p3, V3, p1, V1,)=0 (2)
परंतु उष्मागतिकी के शून्यवें सिद्धांत के अनुसार इन समीकरणों इन समीकरणों में केवल दो ही स्वतंत्र हैं, अर्थात् पहले दोनों समीकरणों की तुष्टि के फलस्वरूप तीसरे की तुष्टि भी अवश्यंभावी है। यह तभी संभव है जब इन समीकरणों का रूप इस प्रकार हो :
 
f1 (p1, V1) = f2 (p2, V2) = f3 (p3,V3) (3)
इनमें से किसी एक द्रव का उपयोग तापमापी के रूप में किया जा सकता है और उस द्रव के फलन के मान को हम प्रायोगिक ताप की भाँति प्रयुक्त कर सकते हैं। यदि पहले द्रव को तापमापी माना जाए तथा उसके फलन का मान t हो तो दूसरे द्रव के लिए हमें जो समीकरण मिलेगा अर्थात् f2 (p2 V2) = t वह दूसरे द्रव का दशासमीकरण (इक्वेशन ऑव स्टेट) कहा जाएगा।
 
यों तो द्रव के किसी भी गुण का उपयोग तापमापी के लिए किया जा सकता है परंतु p तथा V के जिस संबंध का उपयोग किया जाए वह जितना ही सरल होगा उतना ही ताप नापने में सुगमता होगी। हम जानते हैं कि समतापीय अवस्था में अल्प दाबवाली गैस की दाब एवं आयतन का गुणनफल अचर होता है। अतएव pV = R0 को ताप नापने के लिए उपयोग में लाया जा सकता है और इस संबंध का उपयोग किया भी जाता है। परंतु यदि (दाब x अयातन) अचर हो तो (दाब x आयतन) का वर्गमूल अथवा (दाब x आयतन) का वर्ग भी अचर होगा। किंतु इनका उपयोग नहीं किया जाता। pV = R0 का उपयोग करने में क्या लाभ है यह आगे चलकर प्रकट होगा।
 
∆Q निकाय को दी गर्इ ऊष्मा, ∆U निकाय के [[आंतरिक ऊर्जा]] में वृद्धि, एवं ∆W निकाय द्वारा किया गया कार्य है।