"क्रिया विभव": अवतरणों में अंतर

No edit summary
Bluelinking 24 books for verifiability.) #IABot (v2.1alpha3
पंक्ति 36:
 
=== कोशिका झिल्ली ===
प्रत्येक न्यूरॉन एक कोशिका झिल्ली में लिपटा होता है जो एक फोस्फोलिपिड बाइलेयर से बनी होती है। यह झिल्ली आयन के लिए लगभग अभेद्य होती है।<ref name="lieb_1986">{{cite book | author = Lieb WR, Stein WD | year = 1986 | chapter = Chapter 2. Simple Diffusion across the Membrane Barrier | title = Transport and Diffusion across Cell Membranes | publisher = Academic Press | location = San Diego | isbn = 0-12-664661-9 | pages = [https://archive.org/details//page/69 69–112] | url = https://archive.org/details//page/69 }}</ref> आयनों को न्यूरॉन के बाहर और अन्दर अंतरण के लिए, झिल्ली दो संरचनाओं को प्रदान करती है। आयन पंप, आयनों को लगातार अन्दर और बाहर करने के लिए कोशिका की ऊर्जा का उपयोग करते हैं। वे आयनों को अपने संकेन्द्रण प्रवणता के खिलाफ भेजकर (न्यून संकेन्द्रण के क्षेत्रों से उच्च संकेन्द्रण के क्षेत्रों के लिए), संकेन्द्रण भिन्नता का निर्माण करते हैं (न्यूरॉन के अंदर और बाहर)। आयन चैनल तब इस संकेन्द्रण भिन्नता का उपयोग आयानों को अपने संकेन्द्रण प्रवणता के नीचे भेजने के लिए करते हैं (उच्च संकेन्द्रण के क्षेत्रों से न्यून संकेन्द्रण के क्षेत्रों की तरफ)। हालांकि, आयन पंपों द्वारा सतत परिवहन के विपरीत, आयन चैनलों द्वारा परिवहन असतत है। वे सिर्फ अपने परिवेश के संकेतों की प्रतिक्रिया में खुलते और बंद होते हैं। आयन चैनलों के माध्यम से आयनों का यह परिवहन तब कोशिका झिल्ली के वोल्टेज को बदलता है। यही परिवर्तन हैं जो एक ऐक्शन पोटेंशिअल को लाते हैं। एक सादृश्य के रूप में, आयन पंप उस बैटरी की भूमिका निभाते हैं जो एक रेडियो सर्किट (आयन चैनलों) को एक संकेत (ऐक्शन पोटेंशिअल) संचारित करने के लिए अनुमति देते हैं।<ref name="Purves">{{cite book | author = D Purves, GJ Augustine, D Fitzpatrick, WC Hall, A-S LaMantia, JO McNamara, LE White | title = [http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.chapter.227 Neuroscience] | edition = 4th | publisher = Sinauer Associates | location = Sunderland, MA | isbn = 978-0-87893-697-7 | year = 2007 | url-access = registration | url = https://archive.org/details/ }}</ref>
 
[[चित्र:Action potential ion sizes.svg|thumb|left|Despite the small differences in their radii,<ref>CRC Handbook of Chemistry and Physics, 83rd edition, ISBN 0-8493-0483-0, pp. 12–14 to 12–16.</ref> ions rarely go through the "wrong" channel. For example, sodium or calcium ions rarely pass through a potassium channel.|alt = सात क्षेत्र जिनकी त्रिज्या मोनो वेलेंट लिथियम, सोडियम, पोटेशियम, रूबिडीयाम, सीज़ियम (0.76, 1.02, 1.38, 1.52 और 1.67, क्रमशः) फैटायनों की त्रिज्या के आनुपातिक है), कैल्शियम द्विसंयोजक कटियन (1.00 क) और मोनो valent-क्लोराइड (1.81 एक).]]
पंक्ति 54:
एक चैनल की कई विभिन्न अवस्थाएं हो सकती हैं (प्रोटीन की विभिन्न रचना के अनुसार), लेकिन प्रत्येक ऐसी अवस्था या तो बंद है या खुली. सामान्य रूप से, बंद अवस्था या तो छिद्र के एक संकुचन के अनुरूप होगी - इसे आयन के लिए अगम्य बनाते हुए - या छिद्र को रोकते हुए प्रोटीन के एक अलग हिस्से के अनुरूप. उदाहरण के लिए, वोल्टेज-निर्भर सोडियम चैनल ''निष्क्रियता'' से गुज़रता है, जिसमें प्रोटीन का एक भाग छिद्र में सरक जाता है और उसे बंद कर देता है।<ref>{{cite journal |author=Cai SQ, Li W, Sesti F |title=Multiple modes of a-type potassium current regulation |journal=Curr. Pharm. Des. |volume=13 |issue=31 |pages=3178–84 |year=2007 |pmid=18045167 |doi=10.2174/138161207782341286}}</ref> यह निष्क्रियता, सोडियम धरा को बंद कर देती है और ऐक्शन पोटेंशिअल में एक महत्वपूर्ण भूमिका निभाती है।
 
आयन चैनलों को इस बात के आधार पर वर्गीकृत किया जा सकता है कि वे अपने परिवेश के खिलाफ कैसे प्रतिक्रिया देते हैं।<ref name="goldin_2007">{{cite book | author = Goldin AL | year = 2007 | chapter = Neuronal Channels and Receptors | title = Molecular Neurology | editor = Waxman SG | publisher = Elsevier Academic Press | location = Burlington, MA | isbn = 978-0-12-369509-3 | pages = [https://archive.org/details//page/43 43–58] | url = https://archive.org/details//page/43 }}</ref> उदाहरण के लिए, ऐक्शन पोटेंशिअल में शामिल आयन चैनल हैं ''वोल्टेज-सेंसिटिव चैनल'' ; वे सम्पूर्ण झिल्ली में वोल्टेज के खिलाफ प्रतिक्रिया में खुलते और बंद होते हैं। ''लिगेंड-गेटेड चैनल'' एक अन्य महत्वपूर्ण वर्ग का निर्माण करते हैं; ये आयन चैनल लिगेंड अणु के बंधन के लिए प्रतिक्रियास्वरूप खुलते और बंद होते हैं, जैसे न्यूरोट्रांसमीटर. अन्य आयन चैनल, यांत्रिक बलों के साथ खुलते और बंद होते हैं। अभी भी अन्य आयन चैनल - जैसे कि संवेदी न्यूरॉन वाले - अन्य उद्दीपनों के खिलाफ प्रतिक्रिया में खुलते और बंद होते हैं, जैसे प्रकाश, तापमान या दबाव.
 
=== आयन पंप ===
पंक्ति 188:
[[चित्र:NeuronResistanceCapacitanceRev.jpg|thumb|300px|right|Schematic of resistance and capacitance in an abstract neuronal fiber|Figure.1: Cable theory's simplified view of a neuronal fiber. The connected RC circuits correspond to adjacent segments of a passive neurite. The extracellular resistances re (the counterparts of the intracellular resistances ri) are not shown, since they are usually negligibly small; the extracellular medium may be assumed to have the same voltage everywhere.|alt= एक अक्षतंतु की कोशिका झिल्ली में प्रतिरोध और धारिता को दिखाता एक आरेख. कोशिका झिल्ली को आसन्न क्षेत्रों में विभाजित किया गया है, प्रत्येक झिल्ली भर में अपने स्वयं के प्रतिरोध और सिस्टोसल और बाह्य तरल पदार्थ के बीच समाई होने में विभाजित है। बदले में इन क्षेत्रों में से प्रत्येक में एक प्रतिरोध के साथ एक इंट्रासेल्युलर सर्किट से जुड़ा है।]]
 
एक अक्षतंतु के भीतर धाराओं का प्रवाह, केबल सिद्धांत द्वारा मात्रात्मक रूप से वर्णित किया जा सकता है<ref name="rall_1989">{{cite book | author = [[Wilfrid Rall|Rall W]] | year = 1989 | title = Methods in Neuronal Modeling: From Synapses to Networks | chapter = Cable Theory for Dendritic Neurons | editor = [[Christof Koch|C. Koch]] and I. Segev | publisher = Bradford Books, MIT Press | location = Cambridge MA | isbn = 0-262-11133-0 | pages = [https://archive.org/details//page/9 9–62] | url = https://archive.org/details//page/9 }}</ref> और उसकी व्याख्या द्वारा, जैसे पूरक मॉडल.<ref name="segev_1989">{{cite book | author = Segev I, Fleshman JW, Burke RE | year = 1989 | title = Methods in Neuronal Modeling: From Synapses to Networks | chapter = Compartmental Models of Complex Neurons | editor = [[Christof Koch|C. Koch]] and I. Segev | publisher = Bradford Books, MIT Press | location = Cambridge MA | isbn = 0-262-11133-0 | pages = 63–96}}</ref> केबल सिद्धांत को ट्रान्साटलांटिक टेलीग्राफ केबल को स्वरूपित करने के लिए 1855 में लोर्ड केल्विन द्वारा विकसित किया गया था<ref name="kelvin_1855">{{cite journal | author = [[William Thomson, 1st Baron Kelvin|Kelvin WT]] | year = 1855 | title = On the theory of the electric telegraph | journal = Proceedings of the Royal Society | volume = 7 | pages = 382–99 | doi = 10.1098/rspl.1854.0093}}</ref> और 1946 में होज्किन और रुष्टोन द्वारा न्यूरॉन्स के लिए प्रासंगिक दिखाया गया।<ref name="hodgkin_1946">{{cite journal | author = [[Alan Lloyd Hodgkin|Hodgkin AL]], [[W. A. H. Rushton|Rushton WAH]] | year = 1946 | title = The electrical constants of a crustacean nerve fibre | journal = Proceedings of the Royal Society B | volume = 133 | pages = 444–79 | doi = 10.1098/rspb.1946.0024}}</ref> साधारण केबल सिद्धांत में, न्यूरॉन को विद्युत् रूप से निष्क्रिय माना जाता है, बिलकुल बेलनाकार संचरण केबल, जिसे एक आंशिक अंतर समीकरण द्वारा वर्णित किया जा सकता है।<ref name="rall_1989" />
 
:<math> \tau \frac{\partial V}{\partial t} = \lambda^{2} \frac{\partial^{2} V}{\partial x^{2}} - V </math>
पंक्ति 233:
{{Main|Neuromuscular junction|Muscle contraction}}
 
एक सामान्य कंकाल की मांसपेशी कोशिका में ऐक्शन पोटेंशिअल, न्यूरॉन्स में होने वाले ऐक्शन पोटेंशिअल के समान है।<ref name="ganong_1991">{{cite book | author = Ganong W | year = 1991 | title = Review of Medical Physiology | edition = 15th | publisher = Appleton and Lange | location = Norwalk CT | isbn = 0-8385-8418-7 | pages = [https://archive.org/details//page/59 59–60] | url = https://archive.org/details//page/59 }}</ref> ऐक्शन पोटेंशिअल, कोशिका झिल्ली (सरकोलेम्मा) के विध्रुवण से फलित होते हैं, जो वोल्टेज-संवेदनशील सोडियम चैनल को खोलता है; ये निष्क्रिय हो जाते हैं और झिल्ली, पोटेशियम आयनों के जावक धरा से पुनः विध्रुववित होती है। ऐक्शन पोटेंशिअल से पहले रेस्टिंग पोटेंशिअल आमतौर पर -90mV है, जो विशिष्ट न्यूरॉन्स की तुलना में कुछ अधिक ऋणात्मक है। मांसपेशी ऐक्शन पोटेंशिअल लगभग 2-4 ms रहती है, निरपेक्ष अवधि लगभग 1-3 ms होती है और मांसपेशियों के साथ चालन वेग लगभग 5&nbsp;m/s होता है। ऐक्शन पोटेंशिअल, कैल्शियम आयनों को जारी करता है जो ट्रोपोमायोसिन को मुक्त करता है और मांसपेशियों के संकुचन को अनुमति देता है। मांसपेशियों का ऐक्शन पोटेंशिअल, तंत्रिकापेशीय जोड़ पर प्रीसिनेप्टिक न्यूरोनल ऐक्शन पोटेंशिअल के पहुंचने से प्रेरित होता है, जो न्यूरोटोक्सिन का एक आम लक्ष्य है।<ref name="Newmark" />
 
=== प्लांट ऐक्शन पोटेंशिअल ===
पौधों और फंगल कोशिकाओं<ref name="Slayman_1976">{{cite journal | author = Slayman CL, Long WS, Gradmann D | year = 1976 | title = Action potentials in ''[[Neurospora crassa]]'', a mycelial fungus | journal = Biochimica et biophysica acta | volume = 426 | pages = 737–744 | pmid = 130926 | doi = 10.1016/0005-2736(76)90138-3 | issue = 4}}</ref> में भी विद्युतीय रूप से उत्तेजना होती है। पशु ऐक्शन पोटेंशिअल का मौलिक अंतर है, कि पौधे की कोशिकाओं में विध्रुवण, धनात्मक सोडियम आयनों से पूरा नहीं होता बल्कि ऋणात्मक ''क्लोराइड'' आयनों द्वारा होता है।<ref name="Mummert_1991">{{cite journal | author = Mummert H, Gradmann D | year = 1991 | title = Action potentials in ''[[Acetabularia]]'': measurement and simulation of voltage-gated fluxes | journal = Journal of Membrane Biology | volume = 124 | pages = 265–273 | pmid = 1664861 | doi = 10.1007/BF01994359 | issue = 3}}</ref><ref name="Gradmann_2001">{{cite journal | author = Gradmann D | year = 2001 | title = Models for oscillations in plants | journal = Austr. J. Plant Physiol. | volume = 28 | pages = 577–590}}</ref><ref name="Beilby_2007">{{cite journal | author = Beilby MJ | year = 2007 | title = Action potentials in charophytes | journal = Int. Rev. Cytol. | volume = 257 | pages = 43–82 | doi = 10.1016/S0074-7696(07)57002-6 | pmid = 17280895}}</ref> ऐक्शन पोटेंशिअल जो पशु और पौधों के ऐक्शन पोटेंशिअल में आम है वह है धनात्मक पोटेशियम आयनों का एक साथ जारी होना, इसलिए नमक की आसमाटिक हानि (केसीआई), जबकि पशु ऐक्शन पोटेंशिअल ओस्मोटिक आधार पर तटस्थ है, जब आवक सोडियम और बाहर जाने वाले पोटेशियम की बराबर राशि एक दूसरे को ओस्मोटिक आधार पर रद्द करती है। पौधों की कोशिकाओं में विद्युतीय और आसमाटिक संबंध<ref name="Gradmann_1998">{{cite journal | author = Gradmann D, Hoffstadt J | year = 1998 | title = Electrocoupling of ion transporters in plants: Interaction with internal ion concentrations | journal = Journal of Membrane Biology | volume = 166 | pages = 51–59 | pmid = 9784585 | doi = 10.1007/s002329900446 | issue = 1}}</ref> आम रूप से एक छोटी उपलब्धि आसमाटिक का संकेत देते हैं, पौधों के एक कोशिकीय पूर्वजों में आम लवणता की स्थिति बदलती है जबकि तीव्र संकेत संचारण की मौजूदा क्रिया को पशुओं के तहत देखा जाता है, एक स्थिर मेटाजोआ पर्यावरण में.<ref name="Gradmann_1980">{{cite book | author = Gradmann D, Mummert H | year = 1980 | chapter = Plant action potentials | title = Plant Membrane Transport: Current Conceptual Issues | editor = Spanswick RM, Lucas WJ, Dainty J | publisher = Elsevier Biomedical Press | location = Amsterdam | pages = [https://archive.org/details//page/333 333–344] | isbn = 0444801928 | url = https://archive.org/details//page/333 }}</ref> यह माना जाना चाहिए कि कोशिकाओं को ग्रहण किया जाना चाहिए, कुछ उदाहरण संवहनी पौधे ''[[छुइमुइ पौधा|मिमोसा पुडिका (छुईमुई)]]'' में ऐक्शन पोटेंशिअल की क्रिया, उत्तेजनीय मेटाजोआ कोशिका से स्वतंत्र रूप से उत्पन्न होती है।
 
== वर्गीकरण वितरण और विकासवादी लाभ ==
पंक्ति 300:
पहली समस्या को स्क्विड जीनस ''लोलिगो'' के न्यूरॉन्स अक्षतंतु के अध्ययन से हल किया गया था।<ref name="keynes_1989">{{cite journal | author = Keynes RD | year = 1989 | title = The role of giant axons in studies of the nerve impulse | journal = BioEssays | volume = 10 | pages = 90–93|pmid=2541698 | doi = 10.1002/bies.950100213 | issue = 2-3}}</ref> इन अक्षतंतु का व्यास काफी बड़ा होता है (लगभग 1 मिमी, या एक ठेठ न्यूरॉन से 100 गुना बड़ा) और उन्हें नग्न आंखों से देखा जा सकता है, उन्हें निकालने के लिए बनाने के लिए आसान है।<ref name="hodgkin_1952" /><ref name="Meunier">{{cite journal |author=Meunier C, Segev I |title=Playing the devil's advocate: is the Hodgkin-Huxley model useful? |journal=Trends Neurosci. |volume=25 |issue=11 |pages=558–63 |year=2002 |pmid=12392930 |doi=10.1016/S0166-2236(02)02278-6}}</ref> हालांकि, ''लोलिगो'' अक्षतंतु, सभी उत्तेजनीय कोशिकाओं के प्रतिनिधि नहीं हैं और ऐक्शन पोटेंशिअल की कई अन्य प्रणालियों का अध्ययन किया गया है।
 
दूसरी समस्या को क्लैंप वोल्टेज के महत्वपूर्ण विकास के साथ संबोधित किया गया था,<ref name="cole_1949">{{cite journal | author = [[Kenneth Stewart Cole|Cole KS]] | year = 1949 | title = Dynamic electrical characteristics of the squid axon membrane | journal = Arch. Sci. Physiol. | volume = 3 | pages = 253–8}}</ref> जिसने ऐक्शन पोटेंशिअल में अलग से अंतर्निहित आयनिक करेंट के अध्ययन की अनुमति दी और इलेक्ट्रॉनिक शोर के एक मुख्य स्रोत को समाप्त किया, करेंट ''I'' ''C'' जो संधारित्र <sub>''C'' </sub> के साथ जुडा है।<ref name="junge_63_82">जुंग, पीपी 63-82..</ref> चूंकि धरा ट्रांसमेम्ब्रेन वोल्टेज V<sub>''m'' </sub> के बदलाव के ''C'' समय दर के समान होती है, समाधान एक ऐसा सर्किट डिजाइन करना था जो ''V'' <sub>''m'' </sub> को स्थिर रखे (बदलाव का शून्य दर), चाहे झिल्ली में कोई भी धारा बह रही हो। इस प्रकार, ''V'' <sub>''m'' </sub> को स्थिर रखने के लिए आवश्यक धारा झिल्ली के माध्यम से बहते करेंट का मूल्य निर्धारित रखने के लिए सीधा प्रतिबिंब है। अन्य इलेक्ट्रॉनिक अग्रिम उच्च वोल्टेज इनपुट के साथ शामिल है उपयोग के उच्च प्रतिबाधा वाले इलेक्ट्रॉनिक्स और फैराडे केज, इसलिए माप वाले वोल्टेज को खुद मापन प्रभावित नहीं करता.<ref name="kettenmann_1992">{{cite book | author = Kettenmann H, Grantyn R | year = 1992 | title = Practical Electrophysiological Methods | publisher = Wiley | location = New York | isbn = 978-0471562009 | url-access = registration | url = https://archive.org/details/ }}</ref>
 
तीसरी समस्या है, एक छोटे से इलेक्ट्रोड को प्राप्त करना जो इतना छोटा हो जो वोल्टेज को रिकॉर्ड कर सके, एक एकल अक्षतंतु में बिना उसे परेशान किये हुए, इसे 1949 में ग्लास माइक्रोपेप्टाइड इलेक्ट्रोड के आविष्कार के साथ सुलझाया गया था,<ref name="ling_1949">{{cite journal | author = Ling G, Gerard RW | year = 1949 | title = The normal membrane potential of frog sartorius fibers | journal = J. Cell. Comp. Physiol. | volume = 34 | pages = 383–396 |pmid=15410483 | doi = 10.1002/jcp.1030340304 | issue = 3}}</ref> जो अन्य शोधकर्ताओं द्वारा जल्दी अपना लिया गया।<ref name="nastuk_1950">{{cite journal | author = Nastuk WL, [[Alan Lloyd Hodgkin|Hodgkin AL]] | year = 1950 | title = The electrical activity of single muscle fibers | journal = J. Cell. Comp. Physiol. | volume = 35 | pages = 39–73 | doi = 10.1002/jcp.1030350105}}</ref><ref name="brock_1952">{{cite journal | author = Brock LG, Coombs JS, Eccles JC | year = 1952 | title = The recording of potentials from motoneurones with an intracellular electrode | journal = J. Physiol. (London) | volume = 117 | pages = 431–460}}</ref> इस विधि के शोधन के रूप में ठीक करने में सक्षम निर्माण करने के लिए सुझाव है कि इलेक्ट्रोड के टिप जो 100 [[आंग्स्ट्रॉम|Å]] (10&nbsp;nm) हैं, जो उच्च प्रतिबाधा इनपुट देते हैं उनका प्रयोग किया जाना चाहिए। <ref>{{cite book | author = Snell FM | year = 1969 | chapter = Some Electrical Properties of Fine-Tipped Pipette Microelectrodes | title = Glass Microelectrodes | editor = M. Lavallée, OF Schanne, NC Hébert | publisher = John Wiley and Sons | location = New York | id = {{LCCN|68|00|9252}}}}</ref> ऐक्शन पोटेंशिअल को छोटे इलेक्ट्रोड धातु के साथ रिकॉर्ड किया जा सकता है जिसे न्यूरॉन के बस बगल में रखा जाता है। वोल्टेज के साथ न्यूरोचिप युक्त EOSFET या रंजक के साथ ऑप्टिकल रूप से जो Ca<sup>2+</sup> के साथ संवेदनशील हैं।<ref name="dyes">{{cite journal | author = Ross WN, Salzberg BM, Cohen LB, Davila HV | year = 1974 | title = A large change in dye absorption during the action potential | journal = Biophysical Journal | volume = 14 | pages = 983–986 | doi = 10.1016/S0006-3495(74)85963-1 | pmid = 4429774 | issue = 12 | pmc = 1334592}}<br />* {{cite journal | author = Grynkiewicz G, Poenie M, Tsien RY | year = 1985 | title = A new generation of Ca<sup>2+</sup> indicators with greatly improved fluorescence properties | journal = J. Biol. Chem. | volume = 260 | pages = 3440–3450 | pmid = 3838314 | issue = 6}}</ref>
पंक्ति 335:
[[चित्र:MembraneCircuit.svg|thumb|right|448px|Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential. Im and Vm represent the current through, and the voltage across, a small patch of membrane, respectively. The Cm represents the capacitance of the membrane patch, whereas the four gs represent the conductances of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the voltage-sensitive ion channels. The two conductances on the right help determine the resting membrane potential.|alt= सर्किट आरेख, जिसमें पांच समानांतर सर्किट को दर्शाया गया है जो बाह्य विलय के साथ शीर्ष पर जुड़े हुए हैं और नीचे इंट्रासेल्युलर विलय के साथ.]]
 
गणितीय और कम्प्यूटेशनल मॉडल ऐक्शन पोटेंशिअल को समझने के लिए आवश्यक हैं और ऐसे पूर्वानुमान प्रस्तुत करते हैं जो कि प्रयोगात्मक डेटा के खिलाफ परीक्षण किया जा सकता है, एक सिद्धांत का एक कठोर परीक्षण प्रदान करना। इन मॉडलों में सबसे सही और सबसे महत्वपूर्ण होज्किन-हक्सले मॉडल) है जो चार साधारण अंतर समीकरण (ODEs) द्वारा ऐक्शन पोटेंशिअल का वर्णन करता है।<ref name="hodgkin_1952" /> हालांकि होज्किन-हक्सले मॉडल यथार्थवादी तंत्रिका मेम्ब्रेन का एक सरलीकरण हो सकता है क्योंकि यह प्रकृति में मौजूद है, इसकी जटिलता को प्रेरित किया है भी कई और अधिक मॉडल सरलीकृत मॉडल हैं, जैसे मॉरिस-लेकार<ref name="morris_1981">{{cite journal | author = Morris C, Lecar H | year = 1981 | title = Voltage oscillations in the barnacle giant muscle fiber | journal = Biophysical Journal | volume = 35 | pages = 193–213 | doi = 10.1016/S0006-3495(81)84782-0 | pmid = 7260316 | issue = 1 | pmc = 1327511}}</ref> और फिट्ज़ह्यू-नागुमो मॉडल,<ref name="fitzhugh">{{cite journal | author = FitzHugh R | year = 1961 | title = Impulses and physiological states in theoretical models of nerve membrane | journal = Biophysical Journal | volume = 1 | pages = 445–466 | doi = 10.1016/S0006-3495(61)86902-6 | pmid = 19431309 | issue = 6 | pmc = 1366333}}<br />* {{cite journal | author = Nagumo J, Arimoto S, Yoshizawa S | year = 1962 | title = An active pulse transmission line simulating nerve axon | journal = Proceedings of the IRE | volume = 50 | pages = 2061–2070 | doi = 10.1109/JRPROC.1962.288235}}</ref> जिनमें से दोनों में केवल दो युग्मित ODEs हैं। होज्किन-हक्सले और नागुमो मॉडल और उनके सम्बन्धियों, जैसे बोन्होफर-वैन डेर पोल मॉडल<ref name="bonhoeffer_vanderPol">{{cite journal | author = Bonhoeffer KF | year = 1948 | title = Activation of Passive Iron as a Model for the Excitation of Nerve | journal = J. Gen. Physiol. | volume = 32 | pages = 69–91 | doi = 10.1085/jgp.32.1.69 | pmid = 18885679 | issue = 1 | pmc = 2213747}}<br />* {{cite journal | author = Bonhoeffer KF | year = 1953 | title = Modelle der Nervenerregung | journal = Naturwissenschaften | volume = 40 | pages = 301–311 | doi = 10.1007/BF00632438}}<br />* {{cite journal | author = [[Balthasar van der Pol|van der Pol B]] | year = 1926 | title = On relaxation-oscillations | journal = Philosophical Magazine | volume = 2 | pages = 977–992}}<br />* {{cite journal | author = [[Balthasar van der Pol|van der Pol B]], van der Mark J | year = 1928 | title = The heartbeat considered as a relaxation oscillation, and an electrical model of the heart | journal = Philosophical Magazine | volume = 6 | pages = 763–775}}<br />* {{cite journal | author = [[Balthasar van der Pol|van der Pol B]], van der Mark J | year = 1929 | title = The heartbeat considered as a relaxation oscillation, and an electrical model of the heart | journal = Arch. Neerl. Physiol. | volume = 14 | pages = 418–443}}</ref> के गुणों का गणित के भीतर अच्छा अध्ययन किया गया है,<ref name="math_studies">{{cite book | author = Sato S, Fukai H, Nomura T, Doi S | year = 2005 | chapter = Bifurcation Analysis of the Hodgkin-Huxley Equations | title = Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics | edition = 2nd | editor = Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O | publisher = CRC Press | location = Boca Raton | isbn = 978-0415328685 | pages = [https://archive.org/details//page/459 459–478] | url = https://archive.org/details//page/459 }}<br />* {{cite journal | author = Evans JW | year = 1972 | title = Nerve axon equations. I. Linear approximations | journal = Indiana U. Math. Journal | volume = 21 | pages = 877–885 | doi = 10.1512/iumj.1972.21.21071}}<br />* {{cite journal | author = Evans JW, Feroe J | year = 1977 | title = Local stability theory of the nerve impulse | journal = Math. Biosci. | volume = 37 | pages = 23–50 | doi = 10.1016/0025-5564(77)90076-1}}<br />* {{cite book | author = FitzHugh R | year = 1969 | chapter = Mathematical models of axcitation and propagation in nerve | title = Biological Engineering | editor = HP Schwann | publisher = McGraw-Hill | location = New York | pages = 1–85}}<br />* {{cite book | author = [[John Guckenheimer|Guckenheimer J]], [[Philip Holmes|Holmes P]] | year = 1986 | title = Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields | edition = 2nd printing, revised and corrected | publisher = Springer Verlag | location = New York | isbn = 0-387-90819-6 | pages = [https://archive.org/details//page/12 12–16] | url = https://archive.org/details//page/12 }}</ref> अभिकलन<ref name="computational_studies">{{cite book | author = Nelson ME, Rinzel J| year= 1994|chapter= The Hodgkin-Huxley Model|title=The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System| editor= Bower J, Beeman D | publisher = Springer Verlag | location = New York|pages= 29–49 | chapterurl=http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/chapt4.pdf}}<br />{{cite book | author = Rinzel J, Ermentrout GB | year = 1989 | chapter = Analysis of Neural Excitability and Oscillations | title = Methods in Neuronal Modeling: From Synapses to Networks | editor = [[Christof Koch|C. Koch]], I Segev | publisher = Bradford Book, The MIT Press | location = Cambridge, MA | isbn = 0-262-11133-0 | pages = 135–169}}</ref> और इलेक्ट्रॉनिक्स में भी.<ref name="keener_1983">{{cite journal | author = Keener JP | year = 1983 | title = Analogue circuitry for the van der Pol and FitzHugh-Nagumo equations | journal = IEEE Trans. on Systems, Man and Cybernetics | volume = 13 | pages = 1010–1014}}</ref> अधिक आधुनिक अनुसंधानों ने बड़े और एकीकृत प्रणालियों पर अधिक ध्यान केंद्रित किया है और जिसके तहत उन्होंने तंत्रिका प्रणाली के अन्य भागों के साथ ऐक्शन पोटेंशिअल को जोड़ा है (जैसे डेन्ड्राइट और सिनेप्सेस) और इस तरह शोध से अभिकलन तंत्रिका का अध्ययन कर सकते हैं<ref>{{cite book | author = [[Warren Sturgis McCulloch|McCulloch WS]] | year = 1988 | title = Embodiments of Mind | publisher = The MIT Press | location = Cambridge MA | isbn = 0-262-63114-8 | pages = [https://archive.org/details//page/19 19–39, 46–66, 72–141] | url = https://archive.org/details//page/19 }}<br />* {{cite book | title = Neurocomputing:Foundations of Research | editors = JA Anderson, E Rosenfeld | publisher = The MIT Press | location = Cambridge, MA | isbn = 0-262-01097-6 | pages = [https://archive.org/details/neurocomputingfo0000unse/page/15 15–41] | author = edited by James A. Anderson and Edward Rosenfeld. | year = 1988 | url = https://archive.org/details/neurocomputingfo0000unse/page/15 }}</ref> और सरल रिफ्लेक्स का भी, जैसे इस्केप रिफ्लेक्सेस जो सेन्ट्रल पैटर्न जनरेटर द्वारा नियंत्रित होता है।<ref name="cpg">{{cite book | author = Getting PA | year = 1989 | chapter = Reconstruction of Small Neural Networks | title = Methods in Neuronal Modeling: From Synapses to Networks | editor = [[Christof Koch|C Koch]] and I Segev | publisher = Bradford Book, The MIT Press | location = Cambridge, MA | isbn = 0-262-11133-0 | pages = 171–194}}</ref><ref name="pmid10713861">{{cite journal | author = Hooper SL | title = Central pattern generators | journal = Curr. Biol. | volume = 10 | issue = 5 | pages = R176 | year = 2000 | month = March | pmid = 10713861 | doi = 10.1016/S0960-9822(00)00367-5 | url = http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.3378&rep=rep1&type=pdf | issn = }}</ref>
{{Clear}}
 
पंक्ति 351:
 
== सन्दर्भग्रंथ सूची ==
* {{cite book | author = Aidley DJ, Stanfield PR | year = 1996 | title = Ion Channels: Molecules in Action | publisher = Cambridge University Press | location = Cambridge | isbn = 978-0521498821 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Bear MF, Connors BW, Paradiso MA | year = 2001 | title = Neuroscience: Exploring the Brain | publisher = Lippincott | location = Baltimore | isbn = 0781739446 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = [[Theodore Holmes Bullock|Bullock TH]], Orkand R, Grinnell A | year = 1977 | title = Introduction to Nervous Systems | publisher = W. H. Freeman | location = New York | isbn = 0-7167-0030-1 | url-access = registration | url = https://archive.org/details/ }}
* {{cite journal|author=Clay JR|title= Axonal excitability revisited|journal=Prog Biophys Mol Biol|year= 2005|month= May|volume=88|issue=1|pages=59–90|pmid=15561301|doi=10.1016/j.pbiomolbio.2003.12.004}}
* {{cite book | author = Deutsch S, [[Evangelia Micheli-Tzanakou|Micheli-Tzanakou E]] | year = 1987 | title = Neuroelectric Systems | publisher = New York University Press | location = New York | isbn = 0-8147-1782-9 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = [[Bertil Hille|Hille B]] | year = 2001 | title = Ion Channels of Excitable Membranes | edition = 3rd | publisher = Sinauer Associates | location = Sunderland, MA | isbn = 978-0878933211 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Hoppensteadt FC | year = 1986 | title = An Introduction to the Mathematics of Neurons | publisher = Cambridge University Press | location = Cambridge | isbn = 0-521-31574-3 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Johnston D, Wu SM-S | year = 1995 | title = Foundations of Cellular Neurophysiology | publisher = Bradford Book, The MIT Press | location = Cambridge, MA | isbn = 0-262-10053-3 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Junge D | year = 1981 | title = Nerve and Muscle Excitation | edition = 2nd | publisher = Sinauer Associates | location = Sunderland MA | isbn = 0-87893-410-3 | url-access = registration | url = https://archive.org/details/nervemuscleexcit00jung }}
* {{cite book | author = [[Eric R. Kandel|Kandel ER]], Schwartz JH, Jessell TM | year = 2000 | title = [[Principles of Neural Science]] | edition = 4th | publisher = McGraw-Hill | location = New York | isbn = 0-8385-7701-6}}
* {{cite book | author = [[Richard Keynes|Keynes RD]], Aidley DJ | year = 1991 | title = Nerve and Muscle | edition = 2nd | publisher = Cambridge University Press | location = Cambridge | isbn = 0-521-41042-8 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Miller C | year = 1987 | chapter = How ion channel proteins work | title = Neuromodulation: The Biochemical Control of Neuronal Excitability | editor = LK Kaczmarek, IB Levitan | publisher = Oxford University Press | location = New York | isbn = 978-0195040975 | pages = [https://archive.org/details//page/39 39–63] | url = https://archive.org/details//page/39 }}
* {{cite book | author = Nelson DL, Cox MM | year = 2008 | title = Lehninger Principles of Biochemistry | edition = 5th | publisher = W. H. Freeman | location = New York | isbn = 978-0-7167-7108-1 | url-access = registration | url = https://archive.org/details/lehningerprincip00lehn_1 }}
* {{cite book | author = Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia A-S, McNamara JO, Williams SM | title = Neuroscience | edition = 2nd | year = 2001 | publisher = Sinauer Associates | location = Sunderland, MA | chapter = Release of Transmitters from Synaptic Vesicles | isbn = 0878937250 | chapterurl = http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.section.326 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia A-S, McNamara JO, White LE | title = Neuroscience | edition= 4th | year = 2008 | publisher = Sinauer Associates | location = Sunderland, MA | isbn = 978-0-87893-697-7}}
* {{cite book | author = [[Knut Schmidt-Nielsen|Schmidt-Nielsen K]] | year = 1997 | title = Animal Physiology: Adaptation and Environment | edition = 5th | publisher = Cambridge University Press | location = Cambridge | isbn = 978-0521570985 | url-access = registration | url = https://archive.org/details/ }}
* {{cite book | author = Stevens CF | year = 1966 | title = Neurophysiology: A Primer | publisher = John Wiley and Sons | location = New York}} {{LCCN|66|0|15872}} .