50,887
सम्पादन
No edit summary टैग: Reverted मोबाइल संपादन मोबाइल वेब सम्पादन |
रोहित साव27 (चर्चा | योगदान) छो (2402:3A80:1AC1:A49B:5E1C:A1E7:8DEE:7BA0 (Talk) के संपादनों को हटाकर रोहित साव27 के आखिरी अवतरण को पूर्ववत किया) टैग: प्रत्यापन्न |
||
{{ज्यामिति}}
[[चित्र:Congruence.png|thumb|
[[ज्यामिति]] में बिन्दुओं के दो समुच्चय को परस्पर '''सर्वांगसम''' (congruent) कहते हैं यदि उनमें से किसी एक समुच्चय को स्थानान्तरण (translation), [[घूर्णन]] (rotation), परावर्तन (reflection) या इनके मिश्रित क्रियाओं के द्वारा परिवर्तित करने पर दूसरा समुच्चय प्राप्त किया जा सके। सर्वांगसम = सर्व + अंग + सम = सभी अंग बराबर। इसे और अधिक सरल रूप में यों कह सकते हैं कि दो चित्र यदि आकार-प्रकार (shape and size) में समान हैं तो वे परस्पर सर्वांगसम होते हैं (यद्यपि वे अलग-अलग स्थान पर हैं या अलग-अलग स्थितिओं में हो सकते हैं)।
किन्तु प्रायः केवल तीन संगत अंगों की समानता प्रदर्शित कर देना ही सर्वांगसमता सिद्द करने के लिये पर्याप्त होता है।
===
'''SAS (भुजा-कोण-भुजा)''': यदि दो त्रिभुजों की दो संगत भुजाएँ और उनके बीच के कोण समान हों तो वे सर्वांगसम हैं।
|