"तरल ऑक्सीजन": अवतरणों में अंतर

संदर्भ
जानकारी और संदर्भ
पंक्ति 3:
'''तरल ऑक्सीजन''' (Liquid oxygen) एयरोस्पेस, पनडुब्बी और गैस उद्योग में इस्तेमाल किया जाने वाला ऑक्सीजन है, जो आणविक ऑक्सीजन का तरल रूप है। इसका इस्तेमाल ऑक्सीडाइज़र के रूप में पहले तरल-ईंधन रॉकेट में 1926 को रोबर्ट एच॰ गोडार्ड द्वारा किया गया था।<ref>{{Cite web|url=https://www.history.com/this-day-in-history/first-liquid-fueled-rocket|title=First liquid-fueled rocket|last=Editors|first=History com|website=HISTORY|language=en|access-date=2021-09-05}}</ref>
 
==भौतिक गुण==
==इन्हें भी देखें==
तरल ऑक्सीजन का रंग हल्का नीला होता है और यह अत्यधिक अनुचुंबकीय होता है: इसे एक शक्तिशाली घोड़े की नाल के आकार के चुंबक के ध्रुवों के बीच निलंबित किया जा सकता है। <ref>{{Cite book|url=https://books.google.co.in/books?id=ZOm8L9oCwLMC&pg=PA297&redir_esc=y|title=Principles of Chemistry: The Molecular Science|last=Moore|first=John|last2=Stanitski|first2=Conrad|last3=Jurs|first3=Peter|date=2009-01-21|publisher=Cengage Learning|isbn=978-0-495-39079-4|language=en}}</ref> तरल ऑक्सीजन का घनत्व १,१४१ ग्राम/ली (१.१४१ ग्राम/मिली) होता है, जो तरल पानी की तुलना में थोड़ा सघन होता है, और ५४.३६ के (−२१८.७९ डिग्री सेल्सियस; −३६१.८२ डिग्री फारेनहाइट) के हिमांक और१८२.९६ डिग्री सेल्सियस (−२९७.३३ डिग्री फारेनहाइट; ९०.१९ के) १ बार (15 पीएसआई) पर क्वथनांक के साथ क्रायोजेनिक होता है ।  तरल ऑक्सीजन का एक मानक वातावरण (१०० केपीए) और २० डिग्री सेल्सियस (६८ डिग्री फारेनहाइट) के तहत १:८६१ का विस्तार अनुपात है,  और इस वजह से, इसका उपयोग कुछ वाणिज्यिक और सैन्य विमानों में एक के रूप में किया जाता है।  श्वास ऑक्सीजन का परिवहनीय स्रोत है।
 
इसकी क्रायोजेनिक प्रकृति के कारण, तरल ऑक्सीजन इसके द्वारा स्पर्श की जाने वाली सामग्री को अत्यधिक भंगुर बना सकती है।  तरल ऑक्सीजन भी एक बहुत शक्तिशाली ऑक्सीकरण एजेंट है: कार्बनिक पदार्थ तरल ऑक्सीजन में तेजी से और ऊर्जावान रूप से जलेंगे।  इसके अलावा, अगर तरल ऑक्सीजन में भिगोया जाता है, तो कुछ सामग्री जैसे कि कोयला ब्रिकेट, कार्बन ब्लैक, आदि, आग की लपटों, चिंगारी या हल्के प्रहार से प्रभाव जैसे प्रज्वलन के स्रोतों से अप्रत्याशित रूप से विस्फोट कर सकते हैं।  डामर सहित पेट्रोरसायन अक्सर इस व्यवहार को प्रदर्शित करते हैं।
 
टेट्राऑक्सीजन अणु (O4) की भविष्यवाणी पहली बार 1924 में गिल्बर्ट एन. लुईस ने की थी, जिन्होंने यह समझाने का प्रस्ताव दिया कि तरल ऑक्सीजन ने क्यूरी के नियम का उल्लंघन क्यों किया। आधुनिक कंप्यूटर सिमुलेशन से संकेत मिलता है कि, हालांकि तरल ऑक्सीजन में कोई स्थिर O4 अणु नहीं होते हैं, O2अणु जोड़े में एंटीपैरलल स्पिन के साथ जुड़ते हैं, जिससे क्षणिक O4इकाइयाँ बनती हैं।
 
तरल नाइट्रोजन का क्वथनांक −196 °C (77 K) ऑक्सीजन के −183 °C (90 K) की तुलना में कम होता है, और तरल नाइट्रोजन वाले बर्तन हवा से ऑक्सीजन को संघनित कर सकते हैं: जब अधिकांश नाइट्रोजन ऐसे बर्तन से वाष्पित हो जाता है,  एक जोखिम है कि शेष तरल ऑक्सीजन कार्बनिक पदार्थों के साथ हिंसक प्रतिक्रिया कर सकती है।  इसके विपरीत, तरल नाइट्रोजन या तरल हवा को खुली हवा में रखकर ऑक्सीजन से समृद्ध किया जा सकता है;  वायुमंडलीय ऑक्सीजन इसमें घुल जाती है, जबकि नाइट्रोजन अधिमान्य रूप से वाष्पित हो जाती है।
 
अपने सामान्य दबाव क्वथनांक पर तरल ऑक्सीजन का सतही तनाव 13.2 dyn/cm है।
 
उपयोग
 
वाणिज्य तरल ऑक्सीजन को एक औद्योगिक गैस के रूप में वर्गीकृत किया जाता है और व्यापक रूप से औद्योगिक और चिकित्सा उद्देश्यों के लिए उपयोग किया जाता है।  तरल ऑक्सीजन एक क्रायोजेनिक वायु पृथक्करण संयंत्र में आंशिक आसवन द्वारा हवा में स्वाभाविक रूप से पाए जाने वाले ऑक्सीजन से प्राप्त की जाती है।
 
वायु सेना ने लंबे समय से तरल ऑक्सीजन के रणनीतिक महत्व को ऑक्सीडाइज़र के रूप में और अस्पतालों और उच्च ऊंचाई वाले विमान उड़ानों में सांस लेने के लिए गैसीय ऑक्सीजन की आपूर्ति के रूप में मान्यता दी है।  1985 में यूएसएएफ ने सभी प्रमुख खपत ठिकानों पर अपनी ऑक्सीजन उत्पादन सुविधाओं के निर्माण का एक कार्यक्रम शुरू किया।
 
== इन्हें भी देखें ==
* [[औद्योगिक गैस]]
* [[तरल हाइड्रोजन]]