"प्रक्षेप": अवतरणों में अंतर

21,092 बाइट्स जोड़े गए ,  12 वर्ष पहले
सम्पादन सारांश नहीं है
छो (साँचा {{आधार}})
No edit summary
किसी वस्तु के भागों को समतल धरातल या सीधी रेखा पर निरूपित करने को प्रक्षेपण (Projection) नाम दिया गया है।
{{आधार}}
 
(क) '''गणित में प्रक्षेप से अभिप्राय''' : यदि सीधी रेखा १ पर स्थित A, B, C, D आदि बिंदुओं से सीधी रेखा पर लंब AA , BB CC आदि डाले जाएँ, तो रेखा १ पर "लंबकोणीय" प्रक्षेप प्राप्त होता है। इसी प्रकार यदि किसी ठोस पिंड के प्रत्येक बिंदु से किसी समतल धरातल पर लंब डाले जाएँ, तो हमें उस पिंड का लंबकोणीय प्रक्षेप उस धरातल पर प्राप्त होता है। यदि लंब रेखाएँ AA , BB , CC , आदि परस्पर समांतर हों, तब यह प्रक्षेप "समांतर प्रक्षेप' कहलाता है, यदि ये सभी रेखाएँ किसी एक बिंदु पर मिलती हों तब इसे केंद्रीय प्रक्षेप कहेंगे।
''यह शब्द [[हिंदी]] में काफी प्रयुक्त होता है, यदि आप इसका सटीक अर्थ जानते है तो पृष्ठ को संपादित करने में संकोच ना करें (याद रखें - पृष्ठ को संपादित करने के लिये रजिस्टर करना आवश्यक नहीं है) । दिया गया प्रारूप सिर्फ दिशा निर्देशन के लिये है, आप इसमें अपने अनुसार फेर-बदल कर सकते हैं ।''
 
(ख) '''प्रकाशीय प्रक्षेप''' : इस क्रिया में किसी वस्तु को प्रकाशित करके एक पर्दे पर उसका प्रतिबिंब प्राप्त करते हैं। सिनेमा फिल्म के चित्रों का प्रक्षेप, या एपिडायस्कोप द्वारा अपारदर्शी चित्रों का बिंब पर्दे पर प्रस्तुत करना, प्रकाशीय प्रक्षेप के उदाहरण हैं।
 
(ग) '''मानचित्र कला''' के अंतर्गत ग्लोब की अक्षांश एवं देशांतर रेखाओं को समतल धरातल (कागज) पर स्थानांतरित करने की विधि को प्रक्षेप कहते हैं। इस प्रकार खींची हुई अक्षांश एवं देशांतर रेखाओं को "रेखाजाल" कहा जाता है। ग्लोब की अक्षांश एवं देशांतर रेखाओं को किसी समतल धरातल पर विशुद्ध रूप से स्थानांतरित करना संभव नहीं, क्योंकि ग्लोब के वक्र धरातल को बिना किसी अशुद्धि के समतल नहीं किया जा सकता।
 
==प्रक्षेपविधि पर आधारित नाम==
==उदाहरण==
किसी भी मानचित्र अथवा उसके किसी भी भाग की अक्षांश देशांतर रेखाओं को स्थानांतरित करने के लिये ग्लोब को किसी विकासनीय पृष्ठ (शंकु अथवा बेलन) से ढँककर अथवा किसी समतल धरातल को ग्लोब के किसी बिंदु पर स्पर्श करती हुई स्थिति में रखकर किसी द्युतिमान बिंदु से प्रकाश डाला जाता है और इस प्रकार अक्षांश देशांतर रेखाओं की छाया प्रक्षिप्त की जाती है। इस छाया पर ही स्थायी रेखाएँ बना ली जाती हैं। तदुपरांत विकासनीय पृष्ठ (शंकु अथवा बेलन) को किसी विशेष देशांतर पर काटकर खोल दिया जाता है। इनको ज्यामितीय अथवा संदर्श प्रक्षेप कहते हैं। उपर्युक्त क्रिया को शीशे के अथवा तार के बने ग्लोब की सहायता से सरलतापूर्वक संपन्न किया जाता है।
 
सदैव ही यह संभव नहीं कि उपर्युक्त विधि से प्रक्षेप बनाए जाएँ। बहुधा ऐसी आवश्यकता पड़ती है कि किसी विशेष ध्येय से प्रक्षेप बनाना होता है जिसमें ज्यामितीय अथवा संदर्श विधि की अवहेलना करनी पडती है और गणित के सिद्धांतों एवं गणनाओं के आधार पर अक्षांश तथा देशांतर रेखाएँ बिना किसी छाया को प्रक्षिप्त (प्रसारित) किए कागज पर खींच ली जाती हैं। इनको अज्यामितीय अथवा असंदर्श प्रक्षेप कहते हैं। ये अधिक उपयोगी होते हैं।
==मूल==
 
==मानचित्र की विशेषताओं पर आधारित प्रक्षेपों का नामकरण==
==अन्य अर्थ==
उपयोग की दृष्टि से मानचित्र की तीन विशेषताएँ होती हैं : (१) समक्षेत्रफल, (२) यथाकृत तथा (३) शुद्ध दिशा। ये तीनों विशेषताएँ साथ साथ किसी भी प्रक्षेप पर शुद्ध रूप से प्राप्त नहीं की जा सकतीं। प्रत्येक प्रक्षेप पर इनमें से किसी न किसी विशेषता का अभाव रहता है। इन विशेषताओं को शुद्ध रूप में धारण करनेवाले प्रक्षेपों के नाम निम्नलिखित हैं :
 
(१) '''समक्षेत्रफल प्रक्षेप''' (Equal Area Projection) : इन प्रक्षेपों के रेखाजाल पर बने हुए अक्षांश देशांतरीय चतुर्भुज का क्षेत्रफल ग्लोब पर प्रदर्शित होनेवाले संगति चतुर्भुज के क्षेत्रफल से मापकानुपात में समान होता है किंतु इन प्रक्षेपों के रेखाजाल पर खींचे हुए मानचित्रों की आकृति भंग हो जाती है।
 
(२) '''यथाकृतिक प्रक्षेप''' (Equidistant Projection) : इन प्रक्षेपों पर खींचे मानचित्रों की आकृति शुद्ध होती है। आकृति को शुद्ध रखने के हेतु (अ) अक्षांश और देशांतर रेखाओं का परस्पर लंबवत्‌ होना आवश्यक है और (ब) किसी भी एक बिंदु पर मापक समस्त दिशाओं में समान होता है। परंतु मापक एक बिंदु से दूसरे बिंदु पर भिन्न हो जाता है। वास्तव में पूर्ण रूप से आकृति शुद्ध रखना संभव नहीं है। केवल लघु क्षेत्रों में ही आकृति लगभग ठीक रह सकती है। विशेषकर बिंदुओं पर ही पूर्ण रूपेण आकृति शुद्ध रहती है।
==संबंधित शब्द==
=== हिंदी में ===
*[[ ]]
===अन्य भारतीय भाषाओं में निकटतम शब्द===
 
(३) '''समांतराली (दिगंशीय) प्रक्षेप''' : प्रक्षेपों पर अंकित मानचित्रों की दिशाएँ शुद्ध होती हैं। मानचित्र के केंद्रबिंदु से चारों ओर की दिशाएँ उसी प्रकार होती हैं, जैसे पृथ्वी पर। यह केंद्रबिंदु यदि कोई ध्रुव है तो देशांतर रेखाएँ शुद्ध दिशाएँ प्रदर्शित करती हैं। यह प्रक्षेप नाविकों के अधिक उपयोग में आते हैं।
[[श्रेणी: शब्दार्थ]]
 
==प्रक्षेप का विभाजन==
[[en: ]]
विकासनीय पृष्ठ के आधार पर किया हुआ विभाजन अधिक प्रामाणिक माना जाता है। इसके अंतर्गत प्रक्षेपों के निम्नलिखित चार समूह हैं :
 
(१) '''शंकु प्रक्षेप''' (Conical Projection) : ग्लोब को शंकु द्वारा इस प्रकार ढँका जाता है कि शंकु किसी एक अक्षांश पर ही ग्लोब को चारों ओर स्पर्श करता हो । परंतु ध्रुव एवं विषुवत्‌ रेखा पर शंकु का स्पर्श करना संभव नहीं, क्योंकि ये विषम परिस्थितियाँ हैं। ग्लोब को आवृत्त करने के उपरांत किसी द्युतिमान बिंदु से प्रकाश डालकर अक्षांश देशांतर रेखाओं की छाया शंकु धरातल पर प्राप्त की जाती है। इन छायारेखाओं को स्थायी बनाकर शंकु को किसी अभीष्ट देशांतर पर काट दिया जाता है और इस प्रकार समतल धरातल पर रेखाजाल प्राप्त कर लिया जाता है जिसमें अक्षांश रेखाएँ चाप रूप होती हैं और देशांतर रेखाएँ शंकु के शीर्षबिंदु पर मिलनेवाली सरल रेखाएँ होती है। जिस अक्षांश पर शंकु ग्लोब को स्पर्श करता है उसे "मानक अक्षांश' कहते हैं। शंकु को किसी अन्य लघु वृत्त पर भी स्पर्श कराया जा सकता है। परंतु यदि शंकु का शीर्ष ध्रुव के धुर ऊपर न रहे तो अक्षांश रेखाएँ चाप रूप में नहीं होंगी और न देशांतर रेखाएँ चाप रूप में। इस ज्यामित्तीय विधि के अतिरिक्त शंकु प्रक्षेप अज्यामितीय ढंग से भी प्राप्त किए जाते हैं।
 
(२) '''बेलनाकार प्रक्षेप''' (Cylindrical Projection) : बेलन द्वारा ग्लोब को इस प्रकार ढँक दिया जाता है कि बेलन ग्लोब को विषुवत्‌ रेखा पर चारों ओर स्पर्श करता हो। अब किसी द्युतिमान बिंदु से प्रकाश डालकर रेखाजाल प्रक्षिप्त किया जाता है। तदुपरांत बेलन को किसी विशेष देशांतर पर काटकर खोल लिया जाता है और इस प्रकार एक आयताकार रेखाजाल समतल धरातल पर बन जाता है। इस विधि के अंतर्गत ग्लोब के केंद्र की द्युतिमान बिंदु मानते हैं। इस प्रकार प्राप्त रेखाजाल पर देशांतर रेखाएँ उत्तर से दक्षिण की ओर खिंची हुई सरल रेखाएँ होती हैं जिनकी लंबाई विषुवत्‌ रेखा के बराबर होती है। इन प्रक्षेपों में ग्लोब के केंद्र को यदि द्युतिमान बिंदु माना जाता है तो अक्षांश रेखाओं के बीच की दूरी ध्रुवों की ओर एक साथ बढ़ती जाती है।
 
बेलन को विषुवत्‌ रेखा पर स्पर्श न करते हुए अन्य किसी वृह्त वृत्त पर भी स्पर्श कराया जा सकता है, परंतु इस प्रकार खींचे हुए रेखाजाल में अक्षांश ओर देशांतर रेखाएँ वक्र होंगी। बेलनाकार प्रेक्षेपों में ध्रुव का प्रदर्शन नहीं हो पाता, क्योंकि बेलन का धरातल ध्रुव अक्ष के समांतर होने के कारण ध्रुव की छाया अन्यत्र पड़ जाती है और बेलन के धरातल पर नहीं आती।
 
(३) '''खमध्य प्रक्षेप''' (Zenithal Projection) : इन प्रक्षेपों में समतल धरातल पर ही प्रतिबिंब लिया जाता है। यह धरातल ग्लोब को किसी एक बिंदु पर स्पर्श करता है और इस अवस्था में किसी द्युतिमान बिंदु से प्रकाश डाल कर रेखाजाल प्राप्त किया जाता है । द्युतिमान बिंदु को स्थिति पर आधारित खमध्य प्रक्षेपों के विभिन्न नाम निम्नलिखित हैं :
 
*(अ) केंद्रक खमध्य प्रक्षेप : इनमें ग्लोब के केंद्र को द्युतिमान बिंदु माना जाता है।
 
*(ब) त्रिविम खमध्य प्रक्षेप : इसमें किसी ध्रुव को द्युतिमान बिंदु माना जाता है और समतल धरातल दूसरे ध्रुव पर अथवा किसी अन्य बिंदु पर स्पर्श करता है।
 
*(स) लंबवत्‌ खमध्य प्रक्षेप : इसमें द्युतिमान बिंदु को अन्यत्र मानकर प्रकाश डाला जाता है।
 
खमध्य प्रक्षेपों की विधियों में समतल धरातल को यदि एक ध्रुव पर स्पर्श करता हुआ रखते हैं तो ऐसे प्रक्षेप ध्रुवीय खमध्य (Polar Zenithal) प्रक्षेप कहलाते हैं, यदि समतल धरातल विषुवत्‌ रेखा के किसी बिंदु पर ग्लोब को स्पर्श करता है तो ऐसे प्रक्षेप विषुवत्‌रेखीय खमध्य (Equitorial Zenithal) प्रक्षेप कहलाते हैं। इसके अतिरिक्त समतल धरातल ग्लोब को ध्रुव और विषुवत्‌ रेखा के मध्य स्थित किसी बिंदु पर स्पर्श करता है तो इस प्रकार के प्रक्षेप तिर्यक्‌ खमध्य प्रक्षेप कहलाते हैं।
 
द्युतिमान बिंदु की उपर्युक्त स्थिति के आधार पर भी प्रक्षेपों का नामकरण होता है जैसे केंद्रक, लंबवत्‌ एवं तिर्यक्‌ प्रक्षेप।
 
उपर्युक्त विवरण से यह स्पष्ट होता है कि बेलनाकार और खमध्य प्रक्षेप शंकु प्रक्षेप के ही विषम रूप हैं। शंकु यदि बहुत लंबा है ओर बृहत्‌ वृत्त को स्पर्श कर सकता है तो शंकु बेलन का रूप धारण कर लेगा। इसके अतिरिक्त शंकु यदि बहुत ही समतल हो जाय तो ग्लोब को केवल एक बिंदु पर ही स्पर्श करेगा। इस अवस्था में यह खमध्य प्रक्षेप हो जायगा। ऊपर लिखे हुए तीनों समूहों के प्रक्षेप ज्यामितीय एवं अज्यामितीय दोनों विधियों से खींचे जाते हैं।
 
(४) '''रूढ़ प्रक्षेप''' : अज्यामितीय अथवा असंदर्श वर्ग के प्रक्षेप हैं, क्योंकि इनको गणित के सिद्धांत और तत्संबंधी गणनाओं के आधार पर बिना प्रतिबिंब डाले हुए खींचा जाता है। किसी विशेष उद्देश्य की पूर्ति हेतु ही ऐसा किया जाता है। यद्यपि इनका निर्माण सरल नहीं, फिर भी इनका उपयोग अन्य प्रकार के प्रक्षेपों की अपेक्षा अत्यधिक है और इन प्रक्षेपों पर विशेषकर संपूर्ण संसा का मानचित्र खींचा जाता है।
 
प्रक्षेपों के विकास के प्रारंभिक काल में विद्वानों ने प्रक्षेपों की अस्पष्ट विधियों से स्वर्ग को प्रदर्शित करने की चेष्टा की थी। संभवत: सर्वप्रथम प्रक्षेप का आविष्कार थेल्ज महोदय ने ६०० ई. पू. में किया था। वास्तव में यह केंद्रक खमध्य प्रक्षेप था जिसे जन्मपत्रक भी कहा गया। वास्तविक प्रक्षेप का आविष्कार ३०० ई. पू. में सिसली निवासी डायकेयरसूज द्वारा किया गया जिसपर खींचे मानचित्र पर सर्वप्रथम अक्षांश रेखा खींची गई। प्रक्षेप के विकास के इतिहास में इरेटोस्थेनीज़ (दूसरी ईसवी पूर्व), टॉल्मी (दूसरी ईसवी) तथा माकेंटर (१५१८-१५९४) के जीवनकाल महत्वपूर्ण रहे हैं। तदुपरांत सतत्‌ रूप से प्रक्षेपों का विकास एवं संशोधन होता रहा।
गुमनाम सदस्य