सामान्यीकृत माध्य
यदि p एक अशून्य वास्तविक संख्या है, तथा धनात्मक वास्तविक संख्याएँ हैं, तो इन संख्याओं का सामान्यीकृत माध्य (generalized mean) या p घात वाला घात माध्य (power mean) निम्नलिखित है-
विशिष्ट स्थितियाँ
संपादित करेंनिम्निष्ट | |
हरात्मक माध्य (harmonic mean) | |
गुणोत्तर माध्य (geometric mean) | |
समान्तर माध्य (arithmetic mean) | |
वर्ग माध्य (quadratic mean]]) | |
घन माध्य (cubic mean) | |
उचिष्ट (maximum) |
Proof of (geometric mean) We can rewrite the definition of Mp using the exponential function
In the limit p → 0, we can apply L'Hôpital's rule to the argument of the exponential function. Differentiating the numerator and denominator with respect to p, we have
By the continuity of the exponential function, we can substitute back into the above relation to obtain
as desired.
Proof of and Assume (possibly after relabeling and combining terms together) that . Then
The formula for follows from