अभाज्य संख्या

अभाज्य संख्या जो सिर्फ़ अपने आप में ही भाजित हो

वे 1 से बड़ी [प्राकृतिक संख्याएँ], जो स्वयं और 1 के अतिरिक्त और किसी प्राकृतिक संख्या से विभाजित नहीं होतीं, उन्हें 'अभाज्य संख्या' कहते हैं। [1] वे १ से बड़ी प्राकृतिक संख्याएँ जो अभाज्य संख्याँ (whole number) नहीं हैं उन्हें भाज्य संख्या Archived 2023-04-19 at the वेबैक मशीन कहते हैं। अभाज्य संख्याओं की संख्या अनन्त हैं जिसे ३०० ईसापूर्व यूक्लिड ने प्रदर्शित कर दिया था। १ को परिभाषा के अनुसार अभाज्य नहीं माना जाता है। क्योकि १ न तो भाज्य है और न अभाज्य है 46 अभाज्य संख्याएं नीचे दी गयीं हैं-

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

अभाज्य संख्याओं का महत्त्व यह है कि किसी भी अशून्य प्राकृतिक संख्या के गुणनखण्ड को केवल अभाज्य संख्याओं के द्वारा व्यक्त किया जा सकता है और यह गुणनखण्ड एकमेव (unique) होता है। इसे अंकगणित का मौलिक प्रमेय कहा जाता है। I

अभाज्य संख्या को रूढ़ संख्या भी कहा जाता है।

रूढ़ संख्या के गुण

  1. 1 से बड़ी प्रत्येक प्राकृतिक संख्या का कम से कम एक रूढ़ विभाजक अवश्य होता है।

प्राचीन मिस्र में अभाज्य संख्या का ज्ञान होने का संकेत रायंड पपायरस (Rhind Papyrus) में मिलता है। अभाज्य संख्या पे विस्तृत जानकारी प्राचीन यूनान (३०० ईसापूर्व) के गणितज्ञ यूक्लिड के द्वारा लिखी पुस्तक "एलिमेंट्स" में मिलती है। अभाज्य संख्या का अगला विस्तृत उल्लेख सत्रवहीं शताब्दी के गणितज्ञ पियेरे डे फरमैट(1601-1665) के द्वारा मिलता है। फरमैट ने एक सूत्र दिया था जिससे अभाज्य संख्या का अनुमान लगाया जा सकता है। फरमैट ने अनुमान लगाया की जिस भी संख्या को ( 2^2^n +1), जहाँ n एक प्राकृतिक संख्या है, के रूप में लिखा जा सकता है, वो अभाज्य संख्या होंगे। [2] हालाँकि n=4 तक ये सही था, पर n=5 पर जो संख्या आती है- (2^32 +1) वह 641 से विभाजित हो जाती है, अतः ये अभाज्य संख्या नहीं है। इसके बाद जो अभाज्य संख्या पे उल्लेखनीय कार्य हुआ, उसका श्रेय जर्मनी के वैज्ञानिक और गणितज्ञ जोहान्न कार्ल फ्रेडरिक ग़ौस्स (1777- 1855) को जाता है।

गणित में काफ़ी संख्या शृंखलाएं होती हैं, जैसे ज्यामितीय श्रेणी, समांतर श्रेणी इत्यादि, जिनके सूत्र की मदद से शृंखला के किसी संख्या को पता किया जा सकता है, पर अभाज्य संख्याओं की ऐसी कोई शृंखला सूत्र का पता नहीं चल पाया है, क्योंकि ये कोई स्थाई प्रारूप (Pattern) का पालन नहीं करती  | गणित के छेत्र में आज भी ये एक अनसुलझी समस्या है।

बाहरी कड़ियाँ

संपादित करें

अभाज्य संख्याओं के जनित्र एवं गणित्र (कैलकुलेटर)

संपादित करें
  1. "संग्रहीत प्रति". Archived from the original on 23 सितंबर 2016. Retrieved 10 सितंबर 2016.
  2. "संग्रहीत प्रति" (PDF). Archived (PDF) from the original on 12 अक्तूबर 2016. Retrieved 10 सितंबर 2016. {{cite web}}: Check date values in: |archive-date= (help)