"प्राकृतिक गैस": अवतरणों में अंतर

छो Bot: Migrating 73 interwiki links, now provided by Wikidata on d:q40858 (translate me)
122.168.28.81 (वार्ता) द्वारा किए बदलाव 1967894 को पूर्ववत किया
पंक्ति 1:
{{आधार}}
Biogas
Main article: biogas
 
When methane-rich gases are produced by the anaerobic decay of non-fossil organic matter (biomass), these are referred to as biogas (or natural biogas). Sources of biogas include swamps, marshes, and landfills (see landfill gas), as well as sewage sludge and manure[9] by way of anaerobic digesters, in addition to enteric fermentation, particularly in cattle.
 
Methanogenic archaea (bacteria) are responsible for all biological sources of methane, some in symbiotic relationships with other life forms, including termites, ruminants, and cultivated crops. Methane released directly into the atmosphere would be considered a pollutant. However, methane in the atmosphere is oxidized, producing carbon dioxide and water. Methane in the atmosphere has a half life of seven years, meaning that if a tonne of methane were emitted today, 500 kilograms would have broken down to carbon dioxide and water after seven years.
U.S. natural gas extraction, 1900–2005. Source: EIA.
 
Other sources of methane, the principal component of natural gas, include landfill gas, biogas, and methane hydrate. Biogas, and especially landfill gas, are already used in some areas, but their use could be greatly expanded. Landfill gas is a type of biogas, but biogas usually refers to gas produced from organic material that has not been mixed with other waste.
 
Landfill gas is created from the decomposition of waste in landfills. If the gas is not removed, the pressure may get so high that it works its way to the surface, causing damage to the landfill structure, unpleasant odor, vegetation die-off, and an explosion hazard. The gas can be vented to the atmosphere, flared or burned to produce electricity or heat. Experimental systems were being proposed for use in parts of Hertfordshire, UK, and Lyon in France.
 
Once water vapor is removed, about half of landfill gas is methane. Almost all of the rest is carbon dioxide, but there are also small amounts of nitrogen, oxygen, and hydrogen. There are usually trace amounts of hydrogen sulfide and siloxanes, but their concentration varies widely. Landfill gas cannot be distributed through utility natural gas pipelines unless it is cleaned up to less than 3 per cent CO2, and a few parts per million H2S, because CO2 and H2S corrode the pipelines.[10] The presence of CO2 will lower the energy level of the gas below requirements for the pipeline. Siloxanes in the gas will form deposits in gas burners and need to be removed prior to entry into any gas distribution or transmission system.
 
It is usually more economical to combust the gas on site or within a short distance of the landfill using a dedicated pipeline. Water vapor is often removed, even if the gas is combusted on site. If low temperatures condense water out of the gas, siloxanes can be lowered as well because they tend to condense out with the water vapor. Other non-methane components may also be removed to meet emission standards, to prevent fouling of the equipment or for environmental considerations. Co-firing landfill gas with natural gas improves combustion, which lowers emissions.
 
Gas generated in sewage treatment plants is commonly used to generate electricity. For example, the Hyperion sewage plant in Los Angeles burns 8 million cubic feet (230,000 m3) of gas per day to generate power[11] New York City utilizes gas to run equipment in the sewage plants, to generate electricity, and in boilers.[12] Using sewage gas to make electricity is not limited to large cities. The city of Bakersfield, California, uses cogeneration at its sewer plants.[13] California has 242 sewage wastewater treatment plants, 74 of which have installed anaerobic digesters. The total biopower generation from the 74 plants is about 66 MW.[14]
 
Biogas is usually produced using agricultural waste materials, such as otherwise unusable parts of plants and manure. Biogas can also be produced by separating organic materials from waste that otherwise goes to landfills. This method is more efficient than just capturing the landfill gas it produces. Using materials that would otherwise generate no income, or even cost money to get rid of, improves the profitability and energy balance of biogas production.
 
Anaerobic lagoons produce biogas from manure, while biogas reactors can be used for manure or plant parts. Like landfill gas, biogas is mostly methane and carbon dioxide, with small amounts of nitrogen, oxygen and hydrogen. However, with the exception of pesticides, there are usually lower levels of contaminants{{आधार}}
[[चित्र:Natural gas production world.PNG|300px|right|thumb|प्राकृतिक गैस का विश्व के विभिन्न देशों में उत्पादन]]