गणित में खण्डशः रैखिक फलन (piecewise linear function) वह फलन है जो कई खण्डों में परिभाषित हो और जिसका प्रत्येक खण्ड एक रैखिक फलन हो।

एक खण्डशः रैखिक फलन का ग्राफ
एक फलन (नीले रंग में) और उसका खण्डशः रैखिक सन्नीकटीकरण (piecewise linear approximation to it)
दो बीमीय अवकाश में खण्डशः रैखिक फलन (ऊपर) तथा उत्तल पॉलीटोप्स जिनपर यह रैखिक है (नीचे)

निम्नलिखित रूप से परिभाषित फलन एक 'खण्डशः रैखिक फलन' है-

 

यह फलन चार खण्डों में है और इसका प्रत्येक खण्ड सरल रेखा है। इस फलन का ग्राफ दायीं तरफ दिखाया गया है।

सामान्य रूप

संपादित करें

माना   — जहाँ फलन एक अलग प्रवणता को प्राप्त होता है।

सभी तरह के खण्डशः परिभाषित फलनों की भांति खंडशः रैखिक फलन भी हर खण्ड के लिये अलग समीकरण से परिभाषित किया जाता है। ये खण्ड हैं -   एक फलन के रूप में इसे निम्नवत परिभाषित करेंगे-

 

उपरोक्त खण्डशः रैखिक फलन निम्नलिखित स्थिति में सतत (continuous) होगा-

  при  ,

'सतत खण्डशः रैखिक फलन' को 'रैखिक स्प्लाइन' भी कहते हैं।

वैकल्पिक निरूपण

संपादित करें

यह सिद्ध कर सकते हैं कि किसी भी सतत खण्डशः रैखिक फलन को निम्न प्रकार से प्रकट कर सकते हैं-

 .

उपरोक्त गुणाकों में से केवल b को छोड़कर बाकी सभी को विभिन्न खण्डों की रेखाओं के प्रवणताओं के रूप में निम्न प्रकार से व्यक्त कर सकते है:

 , जहाँ  
 

किसी भी सतत फलन (continuous function) को खण्डशः रैखिक फलन द्वारा निरूपित किया जा सकता है। सन्निकटन में जितनी शुद्धता की आवश्यकता होगी, इस फलन के खण्ड उतने ही छोटे किये जा सकते हैं।

इन्हें भी देखें

संपादित करें