क्वांटम क्षेत्र सिद्धान्त (QFT) या प्रमात्रा क्षेत्र सिद्धांत, क्वांटम यांत्रिकी के निर्माण के लिए एक सैद्धांतिक ढांचा प्रदान करता है जिसमें क्वांटम यांत्रिक प्रणालियों को अनंत स्वतंत्रता की डिग्री प्रदर्शित किया जाता है। प्रमात्रा क्षेत्र सिद्धान्त में कणों को आधारभूत भौतिक क्षेत्र की उत्तेजित अवस्था के रूप में काम में लिया जाता है अतः इसे क्षेत्र क्वांटा कहते हैं।

उदाहरण के लिए प्रमात्रा विद्युतगतिकी में एक इलेक्ट्रॉन क्षेत्र एवं एक फोटोन क्षेत्र होते हैं; प्रमात्रा क्रोमोगतिकी में प्रत्येक क्वार्क के लिए एक क्षेत्र निर्धारित होता है और संघनित पदार्थ में परमाणवीय विस्थापन क्षेत्र से फोटोन कण की उत्पति होती है। एडवर्ड विटेन प्रमात्रा क्षेत्र सिद्धान्त को भौतिकी के "अब तक" के सबसे कठिन सिद्धान्तों में से एक मानते हैं।[1]

इतिहाससंपादित करें

चूँकि क्वांटम क्षेत्र सिद्धान्त क्वांटम यांत्रिकी के साथ विशिष्ट आपेक्षिकता के मिलन का अनिवार्य परिणाम है। ऐतिहासिक रूप इसे इसका आरम्भ विद्युत्-चुम्बकीय क्षेत्र के क्वांटीकरण से आरम्भ हुआ।

मूल सिद्धांतसंपादित करें

क्षेत्र का प्रारम्भिक विकास डिराक, फाॅक्क, पाउली, हाइजनबर्ग, बोगोल्युबोव द्वारा किया गया। इसका १९५० में के दशक में क्वांटम विद्युत चुम्बकीकी के विकास के साथ सम्पन्न हुआ।

आमान सिद्धांतसंपादित करें

आमान सिध्दान्त कण भौतिकी के मानक प्रतिमान में सन्निहित बलों के एकीकरण का सूत्रबद्ध प्रमात्रिकरण है।

वृहत संश्लेषणसंपादित करें

सिद्धांतसंपादित करें

चिरसम्मत और क्वांटम क्षेत्रसंपादित करें

चिरसम्मत क्षेत्र सिध्दांत दिक्-काल के अध्ययन क्षेत्र में परिभाषित फलन है[2] दो परिघटनाएं जो जो कि चिरसम्मत सिद्धान्त द्वारा वर्णित की जा सकती हैं वो हैं न्यूटन का सार्वत्रिक गुरुत्वाकर्षण का सिद्धान्त g(x, t) (यहाँ g, x और t का सतत् फलन है) और चिरसम्मत विद्युत-चुम्बकत्व जिसे विद्युत क्षेत्र E(x, t) और चुम्बकीय क्षेत्र B(x, t) से वर्णित किया जा सकता है। क्योंकि ये क्षेत्र समष्टि के प्रत्येक बिन्दु पर सिद्धान्तन विशिष्ट मान रख सकते हैं, इनकी स्वतंत्रता की विमा अनन्त होती है।[2]

लाग्रांजियन सूत्रसंपादित करें

क्वांटम क्षेत्र सिद्धान्त में अक्सर चिरसम्मत सिद्धान्त के लाग्रांजियन सूत्रों का उपयोग होता है। ये सूत्र किसी क्षेत्र के प्रभाव में कण की गति का अध्ययन करने के लिए चिरसम्मत यांत्रिकी में उपयोग होने वाले लाग्रांजियन सूत्रों के अनुरूप हैं। चिरसम्मत क्षत्र सिद्धान्त में इन्हें लाग्रांजियन घनत्व,  , जो कि क्षेत्र φ(x,t) और इसके प्रथम अवकलज (∂φ/∂t and ∇φ) का फलन है पर आयलर-लाग्रांजियन क्षेत्र सिद्धान्त समीकरण लागू की जाती है। निर्देशांक बिन्दुओं को (t, x) = (x0, x1, x2, x3) = xμ लिखने पर, आयलर-लाग्रांजियन गति की समीकरण[2]

 

जहाँ आइनस्टाइन पद्धति के अनुसार μ चर के सापेक्ष इन्हे जोड़ा जाता है।

इस समीकरण को हल करने पर हमें क्षेत्र की "गति की समीकरण" प्राप्त होती हैं।[2] उदाहरण के लिए लाग्रांजियन घनत्व से आरम्भ करने पर

 

इस पर आयलर-लाग्रांजियन समीकरण लागू करने पर हमें गति की समीकरण प्राप्त होती है-

 

इकाई- और बहु-कण क्वांटम यांत्रिकीसंपादित करें

क्वांटम यांत्रिकी में कण (इलेक्ट्रोन या प्रोटोन) को एक समिश्र तरंग फलन, ψ(x, t) द्वारा निरुपित किया जाता है जिसका समय के साथ परिवर्तन का अध्ययन श्रोडिंगर समीकरण द्वारा दिया जाता है

 

जहाँ m कण का द्रव्यमान है और V(x) उस पर आरोपित संवेग

द्वितीय प्रमात्रिकरणसंपादित करें

बोसॉनसंपादित करें

  कण भौतिकी के स्टैंडर्ड माडल  के अनुसार, बोसान वे कण हैं जिनके कारण बल कार्य करते हैं। जैसे-विद्युत चुम्बकीय बल ॥
बोसान तीन प्रकार के होते है-

1. w/z boson 2. graviton 3. higgs boson

फर्मियोनसंपादित करें

  फर्मियोन वे प्राथमिक कण हैं जिनके कारण किसी पदार्थ में

द्रव्यमान होता है।

क्षेत्र संकारकसंपादित करें

उलझनसंपादित करें

क्षेत्रों और कणों का एकीकरणसंपादित करें

कण अभेद्यता का भौतिक अर्थसंपादित करें

कण सरंक्षण और असरक्षणसंपादित करें

स्वयंसिद्ध दृष्टिकोणसंपादित करें

सम्बंधित घटनासंपादित करें

पुनर्मानकीकरणसंपादित करें

आमान स्वतंत्रतासंपादित करें

बहू-आमान परिवर्तनसंपादित करें

अति-सममितिसंपादित करें

अति-सममिति

ये भी देखेंसंपादित करें

टिप्पणीसंपादित करें

सन्दर्भसंपादित करें

  1. "Beautiful Minds, Vol. 20: Ed Witten" (इतालवी में). ला रेपुब्ब्लिका. 2010. मूल से 9 फ़रवरी 2014 को पुरालेखित. अभिगमन तिथि 30 दिसम्बर 2013. यहाँ Archived 2013-12-07 at the Wayback Machine
  2. डेविड टोंग, क्वांटम क्षेत्र सिद्धान्त पर व्याख्यान Archived 2013-02-02 at the Wayback Machine, पाठ 1.

आगे का अध्ययनसंपादित करें

सामान्य पाठक:

परिचयात्मक अवतरण:

अग्रवर्ती अवतरण:

अनुच्छेद:

बाहरी कड़ियाँसंपादित करें