"ऊष्मा": अवतरणों में अंतर

No edit summary
No edit summary
पंक्ति 1:
[[File:171879main_LimbFlareJan12_lg.jpg|thumb|right|300px|यह[[सूर्य]], ऊष्मा का महान स्रोत है और [[सूरजपृथ्वी]] कीको ऊष्मा सूर्य से ही मिलती है। सूर्य से पृथ्वी पृथ्वी पर ऊष्मा अविरत आती रहती है।]]
'''ऊष्मा''' (heat) या '''ऊष्मीय ऊर्जा''' (heat energy), [[ऊर्जा]] का एक रूप है जो [[ताप]] के कारण होता है। ऊर्जा के अन्य रूपों की तरह ऊष्मा का भी प्रवाह होता है। किसी पदार्थ के गर्म या ठंढे होने के कारण उसमें जो ऊर्जा होती है उसे उसकी ऊष्मीय ऊर्जा कहते हैं। अन्य ऊर्जा की तरह इसका मात्रक भी जूल (Joule) होता है पर इसे कैलोरी (Calorie) में भी व्यक्त करते हैं।
 
ऊष्मा,एक वस्तु से दूसरी वस्तु में कुछ प्रकार के ऊष्मीय अन्तर्क्रियाओं (thermal interactions) के द्वारा स्थानान्तरित होती है। उदाहरण के लिए अधिक [[ताप]] वाली कोई लोहे की छड़ पानी में डाली जाय तो छड़ से जल में ऊष्मीय ऊर्जा का स्थानान्तरण होगा। पूरे ब्रह्माण्ड में ऊष्मा की महती भूमिका है। उष्मा की प्रकृति का अध्ययन तथा पदार्थों पर उसका प्रभाव जितना मानव हित से संबंधित है उतना कदाचित् और कोई वैज्ञानिक विषय नहीं। उष्मा से प्राणिमात्र का [[भोजन]] बनता है। वसन्त ऋतु के आगमन पर उष्मा के प्रभाव से ही कली खिलकर फूल हो जाती है तथा वनस्पति क्षेत्र में एक नए जीवन का संचार होता है। इसी के प्रभाव से अंडे से बच्चा बनता है। इन कारणों से यह कोई आश्चर्य की बात नहीं कि पुरातन काल में इस बलवान्, प्रभावशील तथा उपयोगी अभिकर्ता से मानव प्रभावित हुआ तथा उसकी पूजा-अर्चना करने लगा। कदाचित् इसी कारण मानव ने [[सूर्य]] की पूजा की। पृथ्वी पर उष्मा के लगभग संपूर्ण महत्वपूर्ण प्रभावों का स्रोत सूर्य है। [[कोयला]], और [[पेट्रोलियम]], जिनसे हमें उष्मा प्राप्त होती है, प्राचीन युगों से संचित धूप का प्रतिनिधित्व करते हैं।
पंक्ति 20:
 
* '''रसायनिक परिवर्तन''' - कई अभिक्रियाएं तापमान के बढ़ाने से तेज हो जाती हैं। उदाहरण स्वरूप 840<sup>0</sup>C पर [[चूनापत्थर]] का विखंडन -
:: CaCO<sub>3</sub> → CaO + CO<sub>2</sub>
 
== उपशाखाएँ ==
पंक्ति 33:
ऊष्मागतिकी का दूसरा नियम यह कहता है कि ऐसा संभव नहीं और एक ही ताप की वस्तु से यांत्रिक ऊर्जा की प्राप्ति नहीं हो सकती। ऐसा करने के लिये एक निम्न तापीय पिंड ([[संघनित्र]]) की भी आवश्यकता होती है। किसी भी इंजन के लिये उच्च तापीय भट्ठी से प्राप ऊष्मा के एक अंश को निम्न तापीय पिंड को देना आवश्यक है। शेष अंश ही यांत्रिक कार्य में काम आ सकता है। समुद्र के पानी स ऊष्मा लेकर उससे जहाज चलाना इसलिये संभव नहीं कि वहाँ पर सर्वत्र समान ताप है और कोई भी निम्न तापीय वस्तु मौजूद नहीं। इस नियम का बहुत महत्व है। इसके द्वारा ताप के परम पैमाने की संकल्पना की गई है। दूसरा नियम परमाणुओं की गति की अव्यवस्था (disorder) से संबंध रखता है। इस अव्यवस्थितता को मात्रात्मक रूप देने के लिये एंट्रॉपि (entropy) नामक एक नवीन भौतिक राशि की संकल्पना की गई है। उष्मागतिकी के दूसरे नियम का एक पहलू यह भी है। कि प्राकृतिक भौतिक क्रियाओं में एंट्रॉपी की सदा वृद्धि होती है। उसमें ह्रास कभी नहीं होता।
 
'''ऊष्मागतिकी के तीसरे नियम''' के अनुसार शून्य ताप पर किसी ऊष्मागतिक निकाय की एंट्रॉपी शून्य होती है। इसका अन्य रूप यह है कि किसी भी प्रयोग द्वारा शून्य परम ताप की प्राप्ति संभवसम्भव नहीं। हाँ हम उसके अति निकट पहुँच सकते हैं, पर उस तक नहीं।
 
ऊष्मागतिकी के प्रयोग का क्षेत्र बहुत विस्तृत है। विकिरण के ऊष्मागतिक अध्ययन द्वारा एक नवीन और क्रांतिकारी विचारधारा क्वांटम[[क्वान्टम थ्योरीसिद्धान्त]] प्रस्फुटित हुई।हुआ।
 
== इन्हें भी देखें ==
"https://hi.wikipedia.org/wiki/ऊष्मा" से प्राप्त