किसी व्यंजक या फलन का अवकलज निकालना अवकलन की प्राथमिक क्रिया है। नीचे बहुत से फलनों के अवकलज या अवकल गुणांक दिए गए हैं। इनमे ƒ एवं g , x के सापेक्ष अवकलनीय फलन हैं; c कोई वास्तविक संख्या है।
रेखीयता
(
c
f
)
′
=
c
f
′
{\displaystyle \left({cf}\right)'=cf'}
(
f
±
g
)
′
=
f
′
±
g
′
{\textstyle \left({f\pm g}\right)'=f'\pm g'}
गुणन नियम
(
f
g
)
′
=
f
′
g
+
f
g
′
{\displaystyle \left({fg}\right)'=f'g+fg'}
भाग का नियम
(
f
g
)
′
=
f
′
g
−
f
g
′
g
2
,
g
≠
0
{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}
शृंखला नियम
(
f
∘
g
)
′
=
(
f
′
∘
g
)
g
′
{\displaystyle (f\circ g)'=(f'\circ g)g'}
D
x
c
=
0
{\displaystyle D_{x}c=0}
D
x
x
=
1
{\displaystyle D_{x}x=1}
D
x
(
c
x
)
=
c
{\displaystyle D_{x}(cx)=c}
D
x
|
x
|
=
|
x
|
x
=
sgn
x
,
x
≠
0
{\displaystyle D_{x}|x|={|x| \over x}=\operatorname {sgn} x,\qquad x\neq 0}
D
x
x
c
=
c
x
c
−
1
where both
x
c
and
c
x
c
−
1
are defined
{\displaystyle D_{x}x^{c}=cx^{c-1}\qquad {\mbox{where both }}x^{c}{\mbox{ and }}cx^{c-1}{\mbox{ are defined}}}
D
x
(
1
x
)
=
D
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle D_{x}\left({1 \over x}\right)=D_{x}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
D
x
(
1
x
c
)
=
D
x
(
x
−
c
)
=
−
c
x
−
c
−
1
=
−
c
x
c
+
1
{\displaystyle D_{x}\left({1 \over x^{c}}\right)=D_{x}\left(x^{-c}\right)=-cx^{-c-1}=-{c \over x^{c+1}}}
D
x
x
=
D
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
,
x
>
0
{\displaystyle D_{x}{\sqrt {x}}=D_{x}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}
D
x
c
a
x
=
a
c
a
x
ln
c
,
c
>
0
{\displaystyle D_{x}c^{ax}={ac^{ax}\ln c},\qquad c>0}
D
x
e
a
x
=
a
e
a
x
{\displaystyle D_{x}e^{ax}=ae^{ax}}
D
x
log
c
x
=
1
x
ln
c
,
c
>
1
{\displaystyle D_{x}\log _{c}x={1 \over x\ln c},\qquad c>1}
D
x
ln
x
=
1
x
,
x
>
0
{\displaystyle D_{x}\ln x={1 \over x},\qquad x>0}
D
x
ln
|
x
|
=
1
x
x
≠
0
{\displaystyle D_{x}\ln |x|={1 \over x}\qquad x\neq 0}
D
x
x
x
=
x
x
(
1
+
ln
x
)
{\displaystyle D_{x}x^{x}=x^{x}(1+\ln x)}
D
x
sin
x
=
cos
x
{\displaystyle D_{x}\sin x=\cos x}
D
x
cos
x
=
−
sin
x
{\displaystyle D_{x}\cos x=-\sin x}
D
x
tan
x
=
sec
2
x
{\displaystyle D_{x}\tan x=\sec ^{2}x}
D
x
sec
x
=
sec
x
tan
x
{\displaystyle D_{x}\sec x=\sec x\tan x}
D
x
csc
x
=
−
csc
x
cot
x
{\displaystyle D_{x}\csc x=-\csc x\cot x}
D
x
cot
x
=
−
csc
2
x
{\displaystyle D_{x}\cot x=-\csc ^{2}x}
D
x
arcsin
x
=
1
1
−
x
2
{\displaystyle D_{x}\arcsin x={1 \over {\sqrt {1-x^{2}}}}}
D
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle D_{x}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
D
x
arctan
x
=
1
1
+
x
2
{\displaystyle D_{x}\arctan x={1 \over 1+x^{2}}}
D
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle D_{x}\operatorname {arcsec} x={1 \over |x|{\sqrt {x^{2}-1}}}}
D
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle D_{x}\operatorname {arccsc} x={-1 \over |x|{\sqrt {x^{2}-1}}}}
D
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle D_{x}\operatorname {arccot} x={-1 \over 1+x^{2}}}
D
x
sinh
x
=
cosh
x
=
e
x
+
e
−
x
2
{\displaystyle D_{x}\sinh x=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
D
x
cosh
x
=
sinh
x
=
e
x
−
e
−
x
2
{\displaystyle D_{x}\cosh x=\sinh x={\frac {e^{x}-e^{-x}}{2}}}
D
x
tanh
x
=
sech
2
x
{\displaystyle D_{x}\tanh x=\operatorname {sech} ^{2}\,x}
D
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle D_{x}\,\operatorname {sech} \,x=-\tanh x\,\operatorname {sech} \,x}
D
x
coth
x
=
−
csch
2
x
{\displaystyle D_{x}\,\operatorname {coth} \,x=-\,\operatorname {csch} ^{2}\,x}
D
x
csch
x
=
−
coth
x
csch
x
{\displaystyle D_{x}\,\operatorname {csch} \,x=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
D
x
arcsinh
x
=
1
x
2
+
1
{\displaystyle D_{x}\,\operatorname {arcsinh} \,x={1 \over {\sqrt {x^{2}+1}}}}
D
x
arccosh
x
=
1
x
2
−
1
{\displaystyle D_{x}\,\operatorname {arccosh} \,x={1 \over {\sqrt {x^{2}-1}}}}
D
x
arctanh
x
=
1
1
−
x
2
{\displaystyle D_{x}\,\operatorname {arctanh} \,x={1 \over 1-x^{2}}}
D
x
arcsech
x
=
−
1
x
1
−
x
2
{\displaystyle D_{x}\,\operatorname {arcsech} \,x={-1 \over x{\sqrt {1-x^{2}}}}}
D
x
arccoth
x
=
1
1
−
x
2
{\displaystyle D_{x}\,\operatorname {arccoth} \,x={1 \over 1-x^{2}}}
D
x
arccsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle D_{x}\,\operatorname {arccsch} \,x={-1 \over |x|{\sqrt {1+x^{2}}}}}
यदि वास्तविक अर्गुमेन्ट वाले किसी भी अवकलनीय फलन f के लिये इन्वर्स और अन्य यौगिक क्रियाएं अस्तित्व रखती हैं तो,
D
x
(
f
−
1
(
x
)
)
=
1
f
′
(
f
−
1
(
x
)
)
{\displaystyle D_{x}(f^{-1}(x))={\frac {1}{f'(f^{-1}(x))}}}